Search results
Results from the WOW.Com Content Network
Because many of the properties of a magma (such as its viscosity and temperature) are observed to correlate with silica content, silicate magmas are divided into four chemical types based on silica content: felsic, intermediate, mafic, and ultramafic. [20]
Some examples of felsic rocks include granite and rhyolite, while examples of mafic rocks include gabbro and basalt. [1] According to the Encyclopædia Britannica, color indices, 0–50 are felsic, 50–90 are mafic, and 90–100 are ultramafic. [6] An online geology textbook provides an example of the use of another classification scheme, in ...
In a simplified compositional classification, igneous rock types are categorized into felsic or mafic based on the abundance of silicate minerals in the Bowen's Series. Rocks dominated by quartz, plagioclase, alkali feldspar and muscovite are felsic. Mafic rocks are primarily composed of biotite, hornblende, pyroxene and olivine.
On Earth, 90% of lava flows are mafic or ultramafic, with intermediate lava making up 8% of flows and felsic lava making up just 2% of flows. [37] Viscosity also determines the aspect (thickness relative to lateral extent) of flows, the speed with which flows move, and the surface character of the flows. [13] [38]
It is often separated from the others as the "alkali" or "soda" rocks, and there is a corresponding series of mafic rocks. Lastly, a small sub-group rich in olivine and without feldspar has been called the "ultramafic" rocks. They have very low percentages of silica but much iron and magnesia.
Felsic magmas and lavas have lower temperatures of melting and solidification than mafic magmas and lavas. Felsic rocks are usually light in color and have specific gravities less than 3. The most common felsic rock is granite. Common felsic minerals include quartz, muscovite, orthoclase, and the sodium-rich plagioclase feldspars (albite-rich).
Assimilation is a popular mechanism to partly explain the felsification of ultramafic and mafic magmas as they rise through the crust: a hot primitive melt intruding into a cooler, felsic crust will melt the crust and mix with the resulting melt. [2] This then alters the composition of the primitive magma.
The rocks are therefore ultramafic, mafic and intermediate in their geochemical composition. Felsic end members can reach up to 72.1 weight % SiO 2. The SiO 2 contents correspond with the rock types cortlandtite (a melagabbro), hornblendite, hornblende diorite, meladiorite and diorite, the felsic end members with granodiorite till granite.