Search results
Results from the WOW.Com Content Network
Two identical capacitors are connected in parallel with an open switch between them. One of the capacitors is charged with a voltage of V i {\displaystyle V_{i}} , the other is uncharged. When the switch is closed, some of the charge Q = C V i {\displaystyle Q=CV_{i}} on the first capacitor flows into the second, reducing the voltage on the ...
The parasitic capacitance between the turns of an inductor (e.g. Figure 1) or other wound component is often described as self-capacitance. However, in electromagnetics, the term self-capacitance more correctly refers to a different phenomenon: the capacitance of a conductive object without reference to another object.
The capacitance can be calculated if the geometry of the conductors and the dielectric properties of the insulator between the conductors are known. Capacitance is proportional to the area of overlap and inversely proportional to the separation between conducting sheets. The closer the sheets are to each other, the greater the capacitance.
where resistance in ohms and capacitance in farads yields the time constant in seconds or the cutoff frequency in hertz (Hz). The cutoff frequency when expressed as an angular frequency ( ω c = 2 π f c ) {\displaystyle (\omega _{c}{=}2\pi f_{c})} is simply the reciprocal of the time constant.
Those sources can be physical quantities, such as the surface charge density for the capacitance problem, or mathematical abstractions resulting from applying Green's theorem. When the sources exist only on two-dimensional surfaces for three-dimensional problems, the method is often called method of moments (MoM) or boundary element method (BEM ...
For example, in charging such a capacitor the differential increase in voltage with charge is governed by: = where the voltage dependence of capacitance, C(V), suggests that the capacitance is a function of the electric field strength, which in a large area parallel plate device is given by ε = V/d.
The properties of the parallel RLC circuit can be obtained from the duality relationship of electrical circuits and considering that the parallel RLC is the dual impedance of a series RLC. Considering this, it becomes clear that the differential equations describing this circuit are identical to the general form of those describing a series RLC.
where C is the capacitance of the capacitor. Solving this equation for V yields the formula for exponential decay: =, where V 0 is the capacitor voltage at time t = 0. The time required for the voltage to fall to V 0 / e is called the RC time constant and is given by, [1]