Search results
Results from the WOW.Com Content Network
Water has a very high specific heat capacity of 4184 J/(kg·K) at 20 °C (4182 J/(kg·K) at 25 °C) —the second-highest among all the heteroatomic species (after ammonia), as well as a high heat of vaporization (40.65 kJ/mol or 2257 kJ/kg at the normal boiling point), both of which are a result of the extensive hydrogen bonding between its ...
The relative permittivity (in older texts, dielectric constant) is the permittivity of a material expressed as a ratio with the electric permittivity of a vacuum. A dielectric is an insulating material, and the dielectric constant of an insulator measures the ability of the insulator to store electric energy in an electrical field.
A liquid dielectric is a dielectric material in liquid state. Its main purpose is to prevent or rapidly quench electric discharges . Dielectric liquids are used as electrical insulators in high voltage applications, e.g. transformers , capacitors , high voltage cables , and switchgear (namely high voltage switchgear ).
These characteristics, along with the high dielectric constant, make water an excellent choice for building large capacitors. The drawback to using water is the short length of time it can hold off the voltage, typically in the microsecond to ten microsecond (μs) range. Deionised water is relatively inexpensive and is environmentally safe.
Another common term encountered for both absolute and relative permittivity is the dielectric constant which has been deprecated in physics and engineering [2] as well as in chemistry. [ 3 ] By definition, a perfect vacuum has a relative permittivity of exactly 1 whereas at standard temperature and pressure , air has a relative permittivity of ...
For one, polarizable liquids, such as water, have very high dielectric constant at low frequencies, when the molecules can follow the field, but not so high when they can't. Many materials commonly used as dielectrics don't have this change. For such liquids, a low frequency (DC limit) and high frequency (microwave to optical) region would be ...
In the semiconductor industry, the term high-κ dielectric refers to a material with a high dielectric constant (κ, kappa), as compared to silicon dioxide.High-κ dielectrics are used in semiconductor manufacturing processes where they are usually used to replace a silicon dioxide gate dielectric or another dielectric layer of a device.
3 O +) and the concentration of hydroxide (OH −) are increased while the pH remains neutral. Specific heat capacity at constant pressure also increases with temperature, from 4.187 kJ/kg at 25 °C to 8.138 kJ/kg at 350 °C. A significant effect on the behaviour of water at high temperatures is decreased dielectric constant (relative ...