Search results
Results from the WOW.Com Content Network
It was first prepared by the free-radical reaction of cyclohexane using carbon disulfide as a sulfur source. [1]It is produced industrially by the hydrogenation of cyclohexanone in the presence of hydrogen sulfide over a metal sulfide catalyst:
Hess's law states that the change of enthalpy in a chemical reaction is the same regardless of whether the reaction takes place in one step or several steps, provided the initial and final states of the reactants and products are the same. Enthalpy is an extensive property, meaning that its value is proportional to the system size. [4]
The above derivation uses the first and second laws of thermodynamics. The first law of thermodynamics is essentially a definition of heat, i.e. heat is the change in the internal energy of a system that is not caused by a change of the external parameters of the system.
Enthalpy (/ ˈ ɛ n θ əl p i / ⓘ) is the sum of a thermodynamic system's internal energy and the product of its pressure and volume. [1] It is a state function in thermodynamics used in many measurements in chemical, biological, and physical systems at a constant external pressure, which is conveniently provided by the large ambient atmosphere.
(The heat change at constant pressure is called the enthalpy change; in this case the widely tabulated enthalpies of formation are used.) A related term is the heat of combustion, which is the chemical energy released due to a combustion reaction and of interest in the study of fuels.
A thermodynamic system is in equilibrium when it is no longer changing in time. This may happen in a very short time, or it may happen with glacial slowness. A thermodynamic system may be composed of many subsystems which may or may not be "insulated" from each other with respect to the various extensive quantities.
The bond dissociation energy (enthalpy) [4] is also referred to as bond disruption energy, bond energy, bond strength, or binding energy (abbreviation: BDE, BE, or D). It is defined as the standard enthalpy change of the following fission: R—X → R + X. The BDE, denoted by Dº(R—X), is usually derived by the thermochemical equation,
For many substances, the formation reaction may be considered as the sum of a number of simpler reactions, either real or fictitious. The enthalpy of reaction can then be analyzed by applying Hess' law, which states that the sum of the enthalpy changes for a number of individual reaction steps equals the enthalpy change of the overall reaction.