Search results
Results from the WOW.Com Content Network
Compressible flow (or gas dynamics) is the branch of fluid mechanics that deals with flows having significant changes in fluid density.While all flows are compressible, flows are usually treated as being incompressible when the Mach number (the ratio of the speed of the flow to the speed of sound) is smaller than 0.3 (since the density change due to velocity is about 5% in that case). [1]
For a compressible fluid in a tube the volumetric flow rate Q(x) and the axial velocity are not constant along the tube; but the mass flow rate is constant along the tube length. The volumetric flow rate is usually expressed at the outlet pressure. As fluid is compressed or expanded, work is done and the fluid is heated or cooled.
The compressed fluid region is located to the left of the blue line (the liquid-vapor phase boundary). The international pictogram for compressed gases. A compressed fluid (also called a compressed or unsaturated liquid, [1] subcooled fluid or liquid) is a fluid under mechanical or thermodynamic conditions that force it to be a liquid. [2]
In thermodynamics and fluid mechanics, the compressibility (also known as the coefficient of compressibility [1] or, if the temperature is held constant, the isothermal compressibility [2]) is a measure of the instantaneous relative volume change of a fluid or solid as a response to a pressure (or mean stress) change.
Non ideal compressible fluid dynamics (NICFD), or non ideal gas dynamics, is a branch of fluid mechanics studying the dynamic behavior of fluids not obeying ideal-gas thermodynamics. It is for example the case of dense vapors , supercritical flows and compressible two-phase flows .
The working fluid of a heat engine or heat pump is a gas or liquid, usually called a refrigerant, coolant, or working gas, that primarily converts thermal energy (temperature change) into mechanical energy (or vice versa) by phase change and/or heat of compression and expansion.
For constant fluid density, the incompressible equations can be written as a quasilinear advection equation for the fluid velocity together with an elliptic Poisson's equation for the pressure. On the other hand, the compressible Euler equations form a quasilinear hyperbolic system of conservation equations .
If the fluid is flowing out of a reservoir, the sum of all forms of energy is the same because in a reservoir the energy per unit volume (the sum of pressure and gravitational potential ρ g h) is the same everywhere. [6]: Example 3.5 and p.116 Bernoulli's principle can also be derived directly from Isaac Newton's second Law of Motion. If a ...