enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Confidence interval - Wikipedia

    en.wikipedia.org/wiki/Confidence_interval

    The confidence interval can be expressed in terms of statistical significance, e.g.: "The 95% confidence interval represents values that are not statistically significantly different from the point estimate at the .05 level." [20] Interpretation of the 95% confidence interval in terms of statistical significance.

  3. 68–95–99.7 rule - Wikipedia

    en.wikipedia.org/wiki/68–95–99.7_rule

    In the social sciences, a result may be considered statistically significant if its confidence level is of the order of a two-sigma effect (95%), while in particle physics and astrophysics, there is a convention of requiring statistical significance of a five-sigma effect (99.99994% confidence) to qualify as a discovery. [3]

  4. Binomial proportion confidence interval - Wikipedia

    en.wikipedia.org/wiki/Binomial_proportion...

    The probability density function (PDF) for the Wilson score interval, plus PDF s at interval bounds. Tail areas are equal. Since the interval is derived by solving from the normal approximation to the binomial, the Wilson score interval ( , + ) has the property of being guaranteed to obtain the same result as the equivalent z-test or chi-squared test.

  5. Rule of three (statistics) - Wikipedia

    en.wikipedia.org/wiki/Rule_of_three_(statistics)

    Comparison of the rule of three to the exact binomial one-sided confidence interval with no positive samples. In statistical analysis, the rule of three states that if a certain event did not occur in a sample with n subjects, the interval from 0 to 3/ n is a 95% confidence interval for the rate of occurrences in the population.

  6. Point estimation - Wikipedia

    en.wikipedia.org/wiki/Point_estimation

    To do this, we need to construct a confidence interval. Confidence interval describes how reliable an estimate is. We can calculate the upper and lower confidence limits of the intervals from the observed data. Suppose a dataset x 1, . . . , x n is given, modeled as realization of random variables X 1, . . . , X n. Let θ be the parameter of ...

  7. Reliability (statistics) - Wikipedia

    en.wikipedia.org/wiki/Reliability_(statistics)

    Unfortunately, there is no way to directly observe or calculate the true score, so a variety of methods are used to estimate the reliability of a test. Some examples of the methods to estimate reliability include test-retest reliability , internal consistency reliability, and parallel-test reliability .

  8. Bootstrapping (statistics) - Wikipedia

    en.wikipedia.org/wiki/Bootstrapping_(statistics)

    The bootstrap distribution of a parameter-estimator is often used to calculate confidence intervals for its population-parameter. [2] A variety of methods for constructing the confidence intervals have been proposed, although there is disagreement which method is the best.

  9. Confidence and prediction bands - Wikipedia

    en.wikipedia.org/wiki/Confidence_and_prediction...

    Confidence bands can be constructed around estimates of the empirical distribution function.Simple theory allows the construction of point-wise confidence intervals, but it is also possible to construct a simultaneous confidence band for the cumulative distribution function as a whole by inverting the Kolmogorov-Smirnov test, or by using non-parametric likelihood methods.