Search results
Results from the WOW.Com Content Network
Electrolyte imbalance, or water-electrolyte imbalance, is an abnormality in the concentration of electrolytes in the body. Electrolytes play a vital role in maintaining homeostasis in the body. They help to regulate heart and neurological function, fluid balance , oxygen delivery , acid–base balance and much more.
The practical importance of high (i.e. close to 1) transference numbers of the charge-shuttling ion (i.e. Li+ in lithium-ion batteries) is related to the fact, that in single-ion devices (such as lithium-ion batteries) electrolytes with the transfer number of the ion near 1, concentration gradients do not develop. A constant electrolyte ...
The effect is an electrolyte imbalance similar to that seen with thiazide diuretic therapy (which causes pharmacological inhibition of NCC activity). [ 4 ] Gitelman syndrome was formerly considered a subset of Bartter syndrome until the distinct genetic and molecular bases of these disorders were identified.
Metabolic acidosis is a serious electrolyte disorder characterized by an imbalance in the body's acid-base balance.Metabolic acidosis has three main root causes: increased acid production, loss of bicarbonate, and a reduced ability of the kidneys to excrete excess acids. [5]
Electrolyte monitoring is important in the treatment of anorexia and bulimia. In science, electrolytes are one of the main components of electrochemical cells. [2] In clinical medicine, mentions of electrolytes usually refer metonymically to the ions, and (especially) to their concentrations (in blood, serum, urine, or other fluids). Thus ...
Besides the well-known Pitzer-like equations, there is a simple and easy-to-use semi-empirical model, which is called the three-characteristic-parameter correlation (TCPC) model. It was first proposed by Lin et al. [ 22 ] It is a combination of the Pitzer long-range interaction and short-range solvation effect:
Hyperchloremia is an electrolyte disturbance in which there is an elevated level of chloride ions in the blood. [1] The normal serum range for chloride is 96 to 106 mEq/L, [2] therefore chloride levels at or above 110 mEq/L usually indicate kidney dysfunction as it is a regulator of chloride concentration. [3]
The Debye–Hückel theory was proposed by Peter Debye and Erich Hückel as a theoretical explanation for departures from ideality in solutions of electrolytes and plasmas. [1] It is a linearized Poisson–Boltzmann model, which assumes an extremely simplified model of electrolyte solution but nevertheless gave accurate predictions of mean activity coefficients for ions in dilute solution.