Ads
related to: mathematical induction practice problems pdfkutasoftware.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
Mathematical induction can be informally illustrated by reference to the sequential effect of falling dominoes. [1] [2]Mathematical induction is a method for proving that a statement () is true for every natural number, that is, that the infinitely many cases (), (), (), (), … all hold.
There are three inequalities between means to prove. There are various methods to prove the inequalities, including mathematical induction, the Cauchy–Schwarz inequality, Lagrange multipliers, and Jensen's inequality. For several proofs that GM ≤ AM, see Inequality of arithmetic and geometric means.
Group (mathematics) Halting problem. insolubility of the halting problem; Harmonic series (mathematics) divergence of the (standard) harmonic series; Highly composite number; Area of hyperbolic sector, basis of hyperbolic angle; Infinite series. convergence of the geometric series with first term 1 and ratio 1/2; Integer partition; Irrational ...
Scottish philosopher David Hume first formulated the problem of induction, [12] arguing there is no non-circular way to justify inductive reasoning. That is, reasoning based on inferring general conclusions from specific observations. This is a problem because induction is widely used in everyday life and scientific reasoning, e.g.,
Bernoulli's inequality can be proved for case 2, in which is a non-negative integer and , using mathematical induction in the following form: we prove the inequality for r ∈ { 0 , 1 } {\displaystyle r\in \{0,1\}} ,
The induction, bounding and least number principles are commonly used in reverse mathematics and second-order arithmetic. For example, I Σ 1 {\displaystyle {\mathsf {I}}\Sigma _{1}} is part of the definition of the subsystem R C A 0 {\displaystyle {\mathsf {RCA}}_{0}} of second-order arithmetic.
Proof by exhaustion, also known as proof by cases, proof by case analysis, complete induction or the brute force method, is a method of mathematical proof in which the statement to be proved is split into a finite number of cases or sets of equivalent cases, and where each type of case is checked to see if the proposition in question holds. [1]
In proof by mathematical induction, a single "base case" is proved, and an "induction rule" is proved that establishes that any arbitrary case implies the next case. Since in principle the induction rule can be applied repeatedly (starting from the proved base case), it follows that all (usually infinitely many) cases are provable. [15]
Ads
related to: mathematical induction practice problems pdfkutasoftware.com has been visited by 10K+ users in the past month