Search results
Results from the WOW.Com Content Network
The pressure force acts on an area or surface elements and accelerates the fluid in the downwards direction of the pressure gradient. The pressure difference between the beginning and the end of the pressure gradient is known as the pressure drop. The Darcy-Weisbach equation can be utilised to calculate pressure drop in a channel.
The static head of a pump is the maximum height (pressure) it can deliver. The capability of the pump at a certain RPM can be read from its Q-H curve (flow vs. height). Head is useful in specifying centrifugal pumps because their pumping characteristics tend to be independent of the fluid's density. There are generally four types of head:
Darcy's law is an equation that describes the flow of a fluid through a porous medium and through a Hele-Shaw cell.The law was formulated by Henry Darcy based on results of experiments [1] on the flow of water through beds of sand, forming the basis of hydrogeology, a branch of earth sciences.
The surface tension gradient can be caused by concentration gradient or by a temperature gradient (surface tension is a function of temperature). In simple cases, the speed of the flow u ≈ Δ γ / μ {\displaystyle u\approx \Delta \gamma /\mu } , where Δ γ {\displaystyle \Delta \gamma } is the difference in surface tension and μ ...
In engineering, physics, and chemistry, the study of transport phenomena concerns the exchange of mass, energy, charge, momentum and angular momentum between observed and studied systems. While it draws from fields as diverse as continuum mechanics and thermodynamics, it places a heavy emphasis on the commonalities between the topics covered ...
The Alternating Gradient Synchrotron (AGS) is a particle accelerator located at the Brookhaven National Laboratory in Long Island, New York, United States. The Alternating Gradient Synchrotron was built on the innovative concept of the alternating gradient, or strong-focusing principle , developed by Brookhaven physicists.
The simplest definition for a potential gradient F in one dimension is the following: [1] = = where ϕ(x) is some type of scalar potential and x is displacement (not distance) in the x direction, the subscripts label two different positions x 1, x 2, and potentials at those points, ϕ 1 = ϕ(x 1), ϕ 2 = ϕ(x 2).
Depending on the definition of the term, there may also be an applied pressure gradient in the flow direction. The Couette configuration models certain practical problems, like the Earth's mantle and atmosphere, [1] and flow in lightly loaded journal bearings. It is also employed in viscometry and to demonstrate approximations of reversibility ...