enow.com Web Search

  1. Ads

    related to: properties of hyperbolic geometry examples worksheet pdf

Search results

  1. Results from the WOW.Com Content Network
  2. Hyperbolic geometry - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_geometry

    Compared to Euclidean geometry, hyperbolic geometry presents many difficulties for a coordinate system: the angle sum of a quadrilateral is always less than 360°; there are no equidistant lines, so a proper rectangle would need to be enclosed by two lines and two hypercycles; parallel-transporting a line segment around a quadrilateral causes ...

  3. Constructions in hyperbolic geometry - Wikipedia

    en.wikipedia.org/wiki/Constructions_in...

    Hyperbolic geometry is a non-Euclidean geometry where the first four axioms of Euclidean geometry are kept but the fifth axiom, the parallel postulate, is changed.The fifth axiom of hyperbolic geometry says that given a line L and a point P not on that line, there are at least two lines passing through P that are parallel to L. [1]

  4. Hyperbolic metric space - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_metric_space

    In mathematics, a hyperbolic metric space is a metric space satisfying certain metric relations (depending quantitatively on a nonnegative real number δ) between points. . The definition, introduced by Mikhael Gromov, generalizes the metric properties of classical hyperbolic geometry and of tr

  5. Coordinate systems for the hyperbolic plane - Wikipedia

    en.wikipedia.org/wiki/Coordinate_systems_for_the...

    The sum of the angles of a quadrilateral in hyperbolic geometry is always less than 4 right angles (see Lambert quadrilateral). Also in hyperbolic geometry there are no equidistant lines (see hypercycles). This all has influences on the coordinate systems. There are however different coordinate systems for hyperbolic plane geometry.

  6. Hyperbolic triangle - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_triangle

    In hyperbolic geometry, a hyperbolic triangle is a triangle in the hyperbolic plane. It consists of three line segments called sides or edges and three points called angles or vertices . Just as in the Euclidean case, three points of a hyperbolic space of an arbitrary dimension always lie on the same plane.

  7. Hyperbolic space - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_space

    Two-dimensional hyperbolic surfaces can also be understood according to the language of Riemann surfaces. According to the uniformization theorem, every Riemann surface is either elliptic, parabolic or hyperbolic. Most hyperbolic surfaces have a non-trivial fundamental group π 1 = Γ; the groups that arise this way are known as Fuchsian groups.

  8. Hyperbolic coordinates - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_coordinates

    For example, in thermodynamics the isothermal process explicitly follows the hyperbolic path and work can be interpreted as a hyperbolic angle change. Similarly, a given mass M of gas with changing volume will have variable density δ = M / V , and the ideal gas law may be written P = k T δ so that an isobaric process traces a hyperbola in the ...

  9. Hyperbolic 3-manifold - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_3-manifold

    Hyperbolic geometry is the most rich and least understood of the eight geometries in dimension 3 (for example, for all other geometries it is not hard to give an explicit enumeration of the finite-volume manifolds with this geometry, while this is far from being the case for hyperbolic manifolds). After the proof of the Geometrisation ...

  1. Ads

    related to: properties of hyperbolic geometry examples worksheet pdf