Ads
related to: properties of hyperbolic geometry examples worksheet pdfkutasoftware.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
Compared to Euclidean geometry, hyperbolic geometry presents many difficulties for a coordinate system: the angle sum of a quadrilateral is always less than 360°; there are no equidistant lines, so a proper rectangle would need to be enclosed by two lines and two hypercycles; parallel-transporting a line segment around a quadrilateral causes ...
Hyperbolic geometry is a non-Euclidean geometry where the first four axioms of Euclidean geometry are kept but the fifth axiom, the parallel postulate, is changed.The fifth axiom of hyperbolic geometry says that given a line L and a point P not on that line, there are at least two lines passing through P that are parallel to L. [1]
In mathematics, a hyperbolic metric space is a metric space satisfying certain metric relations (depending quantitatively on a nonnegative real number δ) between points. . The definition, introduced by Mikhael Gromov, generalizes the metric properties of classical hyperbolic geometry and of tr
The sum of the angles of a quadrilateral in hyperbolic geometry is always less than 4 right angles (see Lambert quadrilateral). Also in hyperbolic geometry there are no equidistant lines (see hypercycles). This all has influences on the coordinate systems. There are however different coordinate systems for hyperbolic plane geometry.
In hyperbolic geometry, a hyperbolic triangle is a triangle in the hyperbolic plane. It consists of three line segments called sides or edges and three points called angles or vertices . Just as in the Euclidean case, three points of a hyperbolic space of an arbitrary dimension always lie on the same plane.
Two-dimensional hyperbolic surfaces can also be understood according to the language of Riemann surfaces. According to the uniformization theorem, every Riemann surface is either elliptic, parabolic or hyperbolic. Most hyperbolic surfaces have a non-trivial fundamental group π 1 = Γ; the groups that arise this way are known as Fuchsian groups.
Ads
related to: properties of hyperbolic geometry examples worksheet pdfkutasoftware.com has been visited by 10K+ users in the past month