Ads
related to: properties of hyperbolic geometry examples worksheet 2kutasoftware.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
Hyperbolic geometry is a non-Euclidean geometry where the first four axioms of Euclidean geometry are kept but the fifth axiom, the parallel postulate, is changed.The fifth axiom of hyperbolic geometry says that given a line L and a point P not on that line, there are at least two lines passing through P that are parallel to L. [1]
Compared to Euclidean geometry, hyperbolic geometry presents many difficulties for a coordinate system: the angle sum of a quadrilateral is always less than 360°; there are no equidistant lines, so a proper rectangle would need to be enclosed by two lines and two hypercycles; parallel-transporting a line segment around a quadrilateral causes ...
Most hyperbolic surfaces have a non-trivial fundamental group π 1 = Γ; the groups that arise this way are known as Fuchsian groups. The quotient space H 2 / Γ of the upper half-plane modulo the fundamental group is known as the Fuchsian model of the hyperbolic surface. The Poincaré half plane is also hyperbolic, but is simply ...
In hyperbolic geometry, a hyperbolic triangle is a triangle in the hyperbolic plane. It consists of three line segments called sides or edges and three points called angles or vertices . Just as in the Euclidean case, three points of a hyperbolic space of an arbitrary dimension always lie on the same plane.
Hyperbolic functions occur in the calculations of angles and distances in hyperbolic geometry. They also occur in the solutions of many linear differential equations (such as the equation defining a catenary ), cubic equations , and Laplace's equation in Cartesian coordinates .
The Lobachevsky coordinates are useful for integration for length of curves [2] and area between lines and curves. [example needed] Lobachevsky coordinates are named after Nikolai Lobachevsky one of the discoverers of hyperbolic geometry. Circles about the origin of radius 1, 5 and 10 in the Lobachevsky hyperbolic coordinates.
Ads
related to: properties of hyperbolic geometry examples worksheet 2kutasoftware.com has been visited by 10K+ users in the past month