enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Molar absorption coefficient - Wikipedia

    en.wikipedia.org/wiki/Molar_absorption_coefficient

    c is the molar concentration of those species; ℓ is the path length. Different disciplines have different conventions as to whether absorbance is decadic (10-based) or Napierian (e-based), i.e., defined with respect to the transmission via common logarithm (log 10) or a natural logarithm (ln). The molar absorption coefficient is usually decadic.

  3. Hyperchromicity - Wikipedia

    en.wikipedia.org/wiki/Hyperchromicity

    Hyperchromicity can be used to track the condition of DNA as temperature changes. The transition/melting temperature (T m) is the temperature where the absorbance of UV light is 50% between the maximum and minimum, i.e. where 50% of the DNA is denatured. A ten fold increase of monovalent cation concentration increases the temperature by 16.6 °C.

  4. Absorbance - Wikipedia

    en.wikipedia.org/wiki/Absorbance

    Absorbance is defined as "the logarithm of the ratio of incident to transmitted radiant power through a sample (excluding the effects on cell walls)". [1] Alternatively, for samples which scatter light, absorbance may be defined as "the negative logarithm of one minus absorptance, as measured on a uniform sample". [2]

  5. Schwarzschild's equation for radiative transfer - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild's_equation...

    Increasing concentration increases the "effective emission altitude" at which emitted thermal radiation is able to escape to space. The lapse rate (change in temperature with altitude) at the effective radiating level determines how a change in concentration will affect outgoing emissions to space. For most wavelengths, this level is in the ...

  6. Determination of equilibrium constants - Wikipedia

    en.wikipedia.org/wiki/Determination_of...

    where l is the optical path length, ε is a molar absorbance at unit path length and c is a concentration. More than one of the species may contribute to the absorbance. In principle absorbance may be measured at one wavelength only, but in present-day practice it is common to record complete spectra.

  7. Variable pathlength cell - Wikipedia

    en.wikipedia.org/wiki/Variable_pathlength_cell

    Variable pathlength absorption spectroscopy uses a determined slope to calculate concentration. As stated above this is a product of the molar absorptivity and the concentration. Since the actual absorbance value is taken at many data points at equal intervals, background subtraction is generally unnecessary.

  8. Absorption spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Absorption_spectroscopy

    Determining the absolute concentration of a compound requires knowledge of the compound's absorption coefficient. The absorption coefficient for some compounds is available from reference sources, and it can also be determined by measuring the spectrum of a calibration standard with a known concentration of the target.

  9. Nucleic acid quantitation - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_quantitation

    To normalize the concentration to a 10mm equivalent, the following is done: 0.6 OD X (10/3) * 50 μg/mL=100 μg/mL Most spectrophotometers allow selection of the nucleic acid type and path length such that resultant concentration is normalized to the 10 mm path length which is based on the principles of Beer's law.