Search results
Results from the WOW.Com Content Network
For example, the initial object in any concrete category with free objects will be the free object generated by the empty set (since the free functor, being left adjoint to the forgetful functor to Set, preserves colimits). Initial and terminal objects may also be characterized in terms of universal properties and adjoint functors.
Consider a finite group G, a field k and the group algebra kG.The category of k-linear group representations of G is isomorphic to the category of left modules over kG.The isomorphism can be described as follows: given a group representation ρ : G → GL(V), where V is a vector space over k, GL(V) is the group of its k-linear automorphisms, and ρ is a group homomorphism, we turn V into a ...
As a rule of thumb, an equivalence of categories preserves all "categorical" concepts and properties. If F : C → D is an equivalence, then the following statements are all true: the object c of C is an initial object (or terminal object, or zero object), if and only if Fc is an initial object (or terminal object, or zero object) of D
Let T, η, μ be a monad over a category C.The Kleisli category of C is the category C T whose objects and morphisms are given by = (), (,) = (,).That is, every morphism f: X → T Y in C (with codomain TY) can also be regarded as a morphism in C T (but with codomain Y).
Let C be a category with finite products and a terminal object 1. A list object over an object A of C is: an object L A, a morphism o A : 1 → L A, and; a morphism s A : A × L A → L A; such that for any object B of C with maps b : 1 → B and t : A × B → B, there exists a unique f : L A → B such that the following diagram commutes:
Universal constructions are functorial in nature: if one can carry out the construction for every object in a category C then one obtains a functor on C. Furthermore, this functor is a right or left adjoint to the functor U used in the definition of the universal property. [2] Universal properties occur everywhere in mathematics.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Given a diagram F: J → C (thought of as an object in C J), a natural transformation ψ : Δ(N) → F (which is just a morphism in the category C J) is the same thing as a cone from N to F. To see this, first note that Δ(N)(X) = N for all X implies that the components of ψ are morphisms ψ X : N → F(X), which all share the domain N.