Search results
Results from the WOW.Com Content Network
Functions of the form = have at most one -intercept, but may contain multiple -intercepts. The x {\displaystyle x} -intercepts of functions, if any exist, are often more difficult to locate than the y {\displaystyle y} -intercept, as finding the y {\displaystyle y} -intercept involves simply evaluating the function at x = 0 {\displaystyle x=0} .
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.
If the function maps real numbers to real numbers, then its zeros are the -coordinates of the points where its graph meets the x-axis. An alternative name for such a point ( x , 0 ) {\displaystyle (x,0)} in this context is an x {\displaystyle x} -intercept .
The idea is to start with an initial guess, then to approximate the function by its tangent line, and finally to compute the x-intercept of this tangent line. This x-intercept will typically be a better approximation to the original function's root than the first guess, and the method can be iterated. x n+1 is a better approximation than x n ...
The graph of this function is a line with slope and y-intercept. The functions whose graph is a line are generally called linear functions in the context of calculus. However, in linear algebra, a linear function is a function that maps a sum to the sum of the images of the summands.
When the function is of only one variable, it is of the form = +, where a and b are constants, often real numbers. The graph of such a function of one variable is a nonvertical line. a is frequently referred to as the slope of the line, and b as the intercept. If a > 0 then the gradient is positive and the graph slopes upwards
In this notation, x is the argument or variable of the function. A specific element x of X is a value of the variable, and the corresponding element of Y is the value of the function at x, or the image of x under the function. A function f, its domain X, and its codomain Y are often specified by the notation :.
The root of this linear function, that is the value of x such that y = 0 is ... the x intercept of the secant line seems to be a good approximation of the root of f.