Search results
Results from the WOW.Com Content Network
Inorganic nanoparticles have been largely adopted to biological and medical applications ranging from imaging and diagnoses to drug delivery. [22] Inorganic nanoparticles are usually composed of inert metals such as gold and titanium that form nanospheres, however, iron oxide nanoparticles have also become an option.
Attachments on nanoparticles make them more biocompatible. A nanoparticle–biomolecule conjugate is a nanoparticle with biomolecules attached to its surface. Nanoparticles are minuscule particles, typically measured in nanometers (nm), that are used in nanobiotechnology to explore the functions of biomolecules.
Nanoparticles are distinguished from microparticles (1-1000 μm), "fine particles" (sized between 100 and 2500 nm), and "coarse particles" (ranging from 2500 to 10,000 nm), because their smaller size drives very different physical or chemical properties, like colloidal properties and ultrafast optical effects [3] or electric properties. [4]
Nanomedicine is the medical application of nanotechnology. [1] Nanomedicine ranges from the medical applications of nanomaterials and biological devices, to nanoelectronic biosensors, and even possible future applications of molecular nanotechnology such as biological machines.
Polymeric nanoparticles may also contain beneficial controlled release mechanisms. Polymer Branch. Nanoparticles made from natural polymers that are biodegradable have the abilities to target specific organs and tissues in the body, to carry DNA for gene therapy, and to deliver larger molecules such as proteins, peptides, and even genes. [7]
[48] Also, nanoparticles from 8 to 37 nanometers have been shown to cause abnormal symptoms leading to death in mice due to medical complications in the spleen, liver, and lungs. Yet, other studies have shown that 20 nm gold nanoparticles can pass into the retina without causing any cytotoxic effects and nanoparticles of 13 nm diameter were not ...
Nanoparticles can enhance the effects of traditional antibiotics which a bacterium may have become resistant to, and decrease the overall minimum inhibitory concentration (MIC) required for a drug. Silver nanoparticles improve the activity of amoxicillin , penicillin , and gentamicin in bacteria by altering membrane permeability and improving ...
Protein nanotechnology is a burgeoning field of research that integrates the diverse physicochemical properties of proteins with nanoscale technology. This field assimilated into pharmaceutical research to give rise to a new classification of nanoparticles termed protein (or protein-based) nanoparticles (PNPs).