enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Monoid - Wikipedia

    en.wikipedia.org/wiki/Monoid

    Its unit element is the class of the ordinary 2-sphere. Furthermore, if a denotes the class of the torus, and b denotes the class of the projective plane, then every element c of the monoid has a unique expression in the form c = na + mb where n is a positive integer and m = 0, 1, or 2. We have 3b = a + b.

  3. Monoidal category - Wikipedia

    en.wikipedia.org/wiki/Monoidal_category

    Ordinary monoids are precisely the monoid objects in the cartesian monoidal category Set. Further, any (small) strict monoidal category can be seen as a monoid object in the category of categories Cat (equipped with the monoidal structure induced by the cartesian product).

  4. Monoid (category theory) - Wikipedia

    en.wikipedia.org/wiki/Monoid_(category_theory)

    A monoid object in the category of monoids (with the direct product of monoids) is just a commutative monoid. This follows easily from the Eckmann–Hilton argument. A monoid object in the category of complete join-semilattices Sup (with the monoidal structure induced by the Cartesian product) is a unital quantale.

  5. Graph product - Wikipedia

    en.wikipedia.org/wiki/Graph_product

    In graph theory, a graph product is a binary operation on graphs. Specifically, it is an operation that takes two graphs G 1 and G 2 and produces a graph H with the following properties: The vertex set of H is the Cartesian product V ( G 1 ) × V ( G 2 ) , where V ( G 1 ) and V ( G 2 ) are the vertex sets of G 1 and G 2 , respectively.

  6. Presentation of a monoid - Wikipedia

    en.wikipedia.org/wiki/Presentation_of_a_monoid

    M. Kilp, U. Knauer, A.V. Mikhalev, Monoids, Acts and Categories with Applications to Wreath Products and Graphs, De Gruyter Expositions in Mathematics vol. 29, Walter de Gruyter, 2000, ISBN 3-11-015248-7. Ronald V. Book and Friedrich Otto, String-rewriting Systems, Springer, 1993, ISBN 0-387-97965-4, chapter 7, "Algebraic Properties"

  7. Free monoid - Wikipedia

    en.wikipedia.org/wiki/Free_monoid

    In abstract algebra, the free monoid on a set is the monoid whose elements are all the finite sequences (or strings) of zero or more elements from that set, with string concatenation as the monoid operation and with the unique sequence of zero elements, often called the empty string and denoted by ε or λ, as the identity element.

  8. Monoidal functor - Wikipedia

    en.wikipedia.org/wiki/Monoidal_functor

    In category theory, monoidal functors are functors between monoidal categories which preserve the monoidal structure. More specifically, a monoidal functor between two monoidal categories consists of a functor between the categories, along with two coherence maps—a natural transformation and a morphism that preserve monoidal multiplication and unit, respectively.

  9. History monoid - Wikipedia

    en.wikipedia.org/wiki/History_monoid

    History monoids were first presented by M.W. Shields. [1] History monoids are isomorphic to trace monoids (free partially commutative monoids) and to the monoid of dependency graphs. As such, they are free objects and are universal. The history monoid is a type of semi-abelian categorical product in the category of monoids.