enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Microwave auditory effect - Wikipedia

    en.wikipedia.org/wiki/Microwave_auditory_effect

    The microwave auditory effect, also known as the microwave hearing effect or the Frey effect, consists of the human perception of sounds induced by pulsed or modulated radio frequencies. The perceived sounds are generated directly inside the human head without the need of any receiving electronic device.

  3. Neuronal noise - Wikipedia

    en.wikipedia.org/wiki/Neuronal_noise

    Neuronal activity at the microscopic level has a stochastic character, with atomic collisions and agitation, that may be termed "noise." [4] While it isn't clear on what theoretical basis neuronal responses involved in perceptual processes can be segregated into a "neuronal noise" versus a "signal" component, and how such a proposed dichotomy could be corroborated empirically, a number of ...

  4. Hypersonic effect - Wikipedia

    en.wikipedia.org/wiki/Hypersonic_effect

    It is a common understanding in psychoacoustics that the ear cannot respond to sounds at such high frequency via an air-conduction pathway, so one question that this research raised was: does the hypersonic effect occur via the "ordinary" route of sound travelling through the air passage in the ear, or in some other way?

  5. Neural encoding of sound - Wikipedia

    en.wikipedia.org/wiki/Neural_encoding_of_sound

    Lateralization of brain function exists in the cortex, with the processing of speech in the left cerebral hemisphere and environmental sounds in the right hemisphere of the auditory cortex. Music, with its influence on emotions, is also processed in the right hemisphere of the auditory cortex.

  6. Neuroscience of music - Wikipedia

    en.wikipedia.org/wiki/Neuroscience_of_music

    The neuroscience of music is the scientific study of brain-based mechanisms involved in the cognitive processes underlying music. These behaviours include music listening, performing, composing, reading, writing, and ancillary activities. It also is increasingly concerned with the brain basis for musical aesthetics and musical

  7. Psychoacoustics - Wikipedia

    en.wikipedia.org/wiki/Psychoacoustics

    The brain utilizes subtle differences in loudness, tone and timing between the two ears to allow us to localize sound sources. [10] Localization can be described in terms of three-dimensional position: the azimuth or horizontal angle, the zenith or vertical angle, and the distance (for static sounds) or velocity (for moving sounds). [11]

  8. Ultrasonic hearing - Wikipedia

    en.wikipedia.org/wiki/Ultrasonic_hearing

    Ultrasonic hearing is a recognised auditory effect which allows humans to perceive sounds of a much higher frequency than would ordinarily be audible using the inner ear, usually by stimulation of the base of the cochlea through bone conduction. Normal human hearing is recognised as having an upper bound of 15–28 kHz, [1] depending on the person.

  9. Music-specific disorders - Wikipedia

    en.wikipedia.org/wiki/Music-specific_disorders

    Processing pitch is an extremely integral part of music cognition. Recent developments in brain scanning techniques have shown that the posterior secondary cortex plays an extremely important part in the processing of pitch in the brain. [2] In music, "pitch relation" is more important than pitch itself.