enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gekko (optimization software) - Wikipedia

    en.wikipedia.org/wiki/Gekko_(optimization_software)

    GEKKO is an extension of the APMonitor Optimization Suite but has integrated the modeling and solution visualization directly within Python. A mathematical model is expressed in terms of variables and equations such as the Hock & Schittkowski Benchmark Problem #71 [ 2 ] used to test the performance of nonlinear programming solvers.

  3. Comparison of optimization software - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_optimization...

    The optimization software will deliver input values in A, the software module realizing f will deliver the computed value f(x). In this manner, a clear separation of concerns is obtained: different optimization software modules can be easily tested on the same function f, or a given optimization software can be used for different functions f.

  4. Product optimization - Wikipedia

    en.wikipedia.org/wiki/Product_optimization

    For example, a soda bottle can have different packaging variations, flavors, nutritional values. It is possible to optimize a product by making minor adjustments. Typically, the goal is to make the product more desirable and to increase marketing metrics such as Purchase Intent, Believability, Frequency of Purchase, etc.

  5. HiGHS optimization solver - Wikipedia

    en.wikipedia.org/wiki/HiGHS_optimization_solver

    Written in C++ and published under an MIT license, HiGHS provides programming interfaces to C, Python, Julia, Rust, JavaScript, Fortran, and C#. It has no external dependencies. A convenient thin wrapper to Python is available via the highspy PyPI package. Although generally single-threaded, some solver components can utilize multi-core ...

  6. Feasible region - Wikipedia

    en.wikipedia.org/wiki/Feasible_region

    For example, if the feasible region is defined by the constraint set {x ≥ 0, y ≥ 0}, then the problem of maximizing x + y has no optimum since any candidate solution can be improved upon by increasing x or y; yet if the problem is to minimize x + y, then there is an optimum (specifically at (x, y) = (0, 0)).

  7. Cutting stock problem - Wikipedia

    en.wikipedia.org/wiki/Cutting_stock_problem

    One way is the dimensionality of the cutting: the above example illustrates a one-dimensional (1D) problem; other industrial applications of 1D occur when cutting pipes, cables, and steel bars. Two-dimensional (2D) problems are encountered in furniture, clothing and glass production.

  8. Bayesian optimization - Wikipedia

    en.wikipedia.org/wiki/Bayesian_optimization

    Bayesian optimization of a function (black) with Gaussian processes (purple). Three acquisition functions (blue) are shown at the bottom. [8]Bayesian optimization is typically used on problems of the form (), where is a set of points, , which rely upon less (or equal to) than 20 dimensions (,), and whose membership can easily be evaluated.

  9. Scenario optimization - Wikipedia

    en.wikipedia.org/wiki/Scenario_optimization

    In optimization, robustness features translate into constraints that are parameterized by the uncertain elements of the problem. In the scenario method, [ 1 ] [ 2 ] [ 3 ] a solution is obtained by only looking at a random sample of constraints ( heuristic approach) called scenarios and a deeply-grounded theory tells the user how “robust ...