Search results
Results from the WOW.Com Content Network
Grouping terms may allow using other methods for getting a factorization. For example, to factor 4 x 2 + 20 x + 3 x y + 15 y , {\displaystyle 4x^{2}+20x+3xy+15y,} one may remark that the first two terms have a common factor x , and the last two terms have the common factor y .
Algebraic-group factorisation algorithms are algorithms for factoring an integer N by working in an algebraic group defined modulo N whose group structure is the direct sum of the 'reduced groups' obtained by performing the equations defining the group arithmetic modulo the unknown prime factors p 1, p 2, ...
This means that the computation of greatest common divisor has, up to a constant factor, the same complexity as the multiplication. However, if a fast multiplication algorithm is used, one may modify the Euclidean algorithm for improving the complexity, but the computation of a greatest common divisor becomes slower than the multiplication.
If two or more factors of a polynomial are identical, then the polynomial is a multiple of the square of this factor. The multiple factor is also a factor of the polynomial's derivative (with respect to any of the variables, if several). For univariate polynomials, multiple factors are equivalent to multiple roots (over a suitable extension field).
The natural numbers m and n must be coprime, since any common factor could be factored out of m and n to make g greater. Thus, any other number c that divides both a and b must also divide g. The greatest common divisor g of a and b is the unique (positive) common divisor of a and b that is divisible by any other common divisor c. [6]
The reverse process is called factoring or factorization. In particular, if the proof above is read in reverse it illustrates the technique called factoring by grouping . Table as an alternative to FOIL
The next time you're left with a half-full bottle of wine after a party, don't pour it down the drain. We tapped two wine experts to give you their best tips for storing leftover wine.
In mathematics and computer algebra the factorization of a polynomial consists of decomposing it into a product of irreducible factors.This decomposition is theoretically possible and is unique for polynomials with coefficients in any field, but rather strong restrictions on the field of the coefficients are needed to allow the computation of the factorization by means of an algorithm.