Ad
related to: quotient rule calculus calculator soup with extra questions
Search results
Results from the WOW.Com Content Network
In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. Let () = () ...
Sum rule in differentiation; Constant factor rule in differentiation; Linearity of differentiation; Power rule; Chain rule; Local linearization; Product rule; Quotient rule; Inverse functions and differentiation; Implicit differentiation; Stationary point. Maxima and minima; First derivative test; Second derivative test; Extreme value theorem ...
The elementary power rule generalizes considerably. The most general power rule is the functional power rule: for any functions f and g, ′ = () ′ = (′ + ′ ), wherever both sides are well defined. Special cases
In these limits, the infinitesimal change is often denoted or .If () is differentiable at , (+) = ′ ().This is the definition of the derivative.All differentiation rules can also be reframed as rules involving limits.
In geometric calculus, the geometric derivative satisfies a weaker form of the Leibniz (product) rule. It specializes the Fréchet derivative to the objects of geometric algebra. Geometric calculus is a powerful formalism that has been shown to encompass the similar frameworks of differential forms and differential geometry. [1]
[5] [6] The difference quotient is a measure of the average rate of change of the function over an interval (in this case, an interval of length h). [ 7 ] [ 8 ] : 237 [ 9 ] The limit of the difference quotient (i.e., the derivative) is thus the instantaneous rate of change.
The validity of this rule follows from the validity of the Feynman method, for one may always substitute a subscripted del and then immediately drop the subscript under the condition of the rule. For example, from the identity A ⋅( B × C ) = ( A × B )⋅ C we may derive A ⋅(∇× C ) = ( A ×∇)⋅ C but not ∇⋅( B × C ) = (∇× B ...
This, combined with the sum rule for derivatives, shows that differentiation is linear. The rule for integration by parts is derived from the product rule, as is (a weak version of) the quotient rule. (It is a "weak" version in that it does not prove that the quotient is differentiable but only says what its derivative is if it is differentiable.)
Ad
related to: quotient rule calculus calculator soup with extra questions