Search results
Results from the WOW.Com Content Network
In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. Let () = () ...
Sum rule in differentiation; Constant factor rule in differentiation; Linearity of differentiation; Power rule; Chain rule; Local linearization; Product rule; Quotient rule; Inverse functions and differentiation; Implicit differentiation; Stationary point. Maxima and minima; First derivative test; Second derivative test; Extreme value theorem ...
The elementary power rule generalizes considerably. The most general power rule is the functional power rule: for any functions f and g, ′ = () ′ = (′ + ′ ), wherever both sides are well defined. Special cases
In mathematics, an integrating factor is a function that is chosen to facilitate the solving of a given equation involving differentials.It is commonly used to solve non-exact ordinary differential equations, but is also used within multivariable calculus when multiplying through by an integrating factor allows an inexact differential to be made into an exact differential (which can then be ...
All derivatives of circular trigonometric functions can be found from those of sin(x) and cos(x) by means of the quotient rule applied to functions such as tan(x) = sin(x)/cos(x). Knowing these derivatives, the derivatives of the inverse trigonometric functions are found using implicit differentiation .
The validity of this rule follows from the validity of the Feynman method, for one may always substitute a subscripted del and then immediately drop the subscript under the condition of the rule. For example, from the identity A ⋅( B × C ) = ( A × B )⋅ C we may derive A ⋅(∇× C ) = ( A ×∇)⋅ C but not ∇⋅( B × C ) = (∇× B ...
Starting loan balance. Monthly payment. Paid toward principal. Paid toward interest. New loan balance. Month 1. $20,000. $387. $287. $100. $19,713. Month 2. $19,713. $387
In geometric calculus, the geometric derivative satisfies a weaker form of the Leibniz (product) rule. It specializes the Fréchet derivative to the objects of geometric algebra. Geometric calculus is a powerful formalism that has been shown to encompass the similar frameworks of differential forms and differential geometry. [1]