Search results
Results from the WOW.Com Content Network
In mathematics and logic, the term "uniqueness" refers to the property of being the one and only object satisfying a certain condition. [1] This sort of quantification is known as uniqueness quantification or unique existential quantification, and is often denoted with the symbols "∃!" [2] or "∃ =1". For example, the formal statement
If E is a logical predicate, means that there exists at least one value of x for which E is true. 2. Often used in plain text as an abbreviation of "there exists". ∃! Denotes uniqueness quantification, that is, ! means "there exists exactly one x such that P (is true)".
In predicate logic, an existential quantification is a type of quantifier, a logical constant which is interpreted as "there exists", "there is at least one", or "for some". It is usually denoted by the logical operator symbol ∃, which, when used together with a predicate variable, is called an existential quantifier (" ∃x" or "∃(x)" or ...
E notation, or scientific notation, a way of writing very large and very small numbers such as 5E7; ∃ (a backwards E; U+2203) or existential quantification, the symbol for "there exists...", in predicate logic; ∃!, meaning "there exists only one" (or "there exists exactly one"), see Uniqueness quantification
There exists an x such that ... For at least one x, .... Keywords for uniqueness quantification include: For exactly one natural number x, ... There is one and only one x such that .... Further, x may be replaced by a pronoun. For example, For every natural number, its product with 2 equals to its sum with itself. Some natural number is prime.
In logic, a set of symbols is commonly used to express logical representation. The following table lists many common symbols, together with their name, how they should be read out loud, and the related field of mathematics.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In the theory of partial orders with one relation symbol ≤, one could define s = t to be an abbreviation for s ≤ t t ≤ s. In set theory with one relation ∈, one may define s = t to be an abbreviation for ∀x (s ∈ x ↔ t ∈ x) ∀x (x ∈ s ↔ x ∈ t). This definition of equality then automatically satisfies the axioms for equality.