enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Geographical distance - Wikipedia

    en.wikipedia.org/wiki/Geographical_distance

    Geographical distance or geodetic distance is the distance measured along the surface of the Earth, or the shortest arch length. The formulae in this article calculate distances between points which are defined by geographical coordinates in terms of latitude and longitude. This distance is an element in solving the second (inverse) geodetic ...

  3. Haversine formula - Wikipedia

    en.wikipedia.org/wiki/Haversine_formula

    The haversine formula determines the great-circle distance between two points on a sphere given their longitudes and latitudes. Important in navigation , it is a special case of a more general formula in spherical trigonometry , the law of haversines , that relates the sides and angles of spherical triangles.

  4. Vincenty's formulae - Wikipedia

    en.wikipedia.org/wiki/Vincenty's_formulae

    Vincenty's formulae are two related iterative methods used in geodesy to calculate the distance between two points on the surface of a spheroid, developed by Thaddeus Vincenty (1975a). They are based on the assumption that the figure of the Earth is an oblate spheroid, and hence are more accurate than methods that assume a spherical Earth, such ...

  5. Ex-meridian - Wikipedia

    en.wikipedia.org/wiki/Ex-meridian

    With this information it is possible using the haversine formula to calculate the latitude where the position line crosses the assumed longitude. The formula is: The formula is: h a v ( M Z D ) = h a v ( T Z D ) − h a v ( L H A ) c o s ( L a t ) c o s ( D e c ) {\displaystyle hav(MZD)=hav(TZD)-hav(LHA)cos(Lat)cos(Dec)}

  6. Earth-centered, Earth-fixed coordinate system - Wikipedia

    en.wikipedia.org/wiki/Earth-centered,_Earth...

    The reverse conversion is harder: given X-Y-Z can immediately get longitude, but no closed formula for latitude and height exists. See "Geodetic system." Using Bowring's formula in 1976 Survey Review the first iteration gives latitude correct within 10-11 degree as long as the point is within 10,000 meters above or 5,000 meters below the ellipsoid.

  7. Geographic coordinate conversion - Wikipedia

    en.wikipedia.org/wiki/Geographic_coordinate...

    The formulas involved can be complex and in some cases, such as in the ECEF to geodetic conversion above, the conversion has no closed-form solution and approximate methods must be used. References such as the DMA Technical Manual 8358.1 [15] and the USGS paper Map Projections: A Working Manual [16] contain formulas for conversion of map ...

  8. Earth radius - Wikipedia

    en.wikipedia.org/wiki/Earth_radius

    Earth radius (denoted as R 🜨 or R E) is the distance from the center of Earth to a point on or near its surface. Approximating the figure of Earth by an Earth spheroid (an oblate ellipsoid), the radius ranges from a maximum (equatorial radius, denoted a) of nearly 6,378 km (3,963 mi) to a minimum (polar radius, denoted b) of nearly 6,357 km (3,950 mi).

  9. Longitude by chronometer - Wikipedia

    en.wikipedia.org/wiki/Longitude_by_chronometer

    It is an astronomical method of calculating the longitude at which a position line, drawn from a sight by sextant of any celestial body, crosses the observer's assumed latitude. [1] In order to calculate the position line, the time of the sight must be known so that the celestial position i.e. the Greenwich Hour Angle (Celestial Longitude ...