Search results
Results from the WOW.Com Content Network
A sieve analysis (or gradation test) is a practice or procedure used in geology, civil engineering, [1] and chemical engineering [2] to assess the particle size distribution (also called gradation) of a granular material by allowing the material to pass through a series of sieves of progressively smaller mesh size and weighing the amount of material that is stopped by each sieve as a fraction ...
Windows: Originated in NASA World Wind: Estereografica Web [15] Stereographic projection and fault kinematics Reyuntec Public domain Cross-platform: ASP.net Free web application (english and spanish) Generic Mapping Tools [16] Map generation and analysis Lamont–Doherty and University of Hawaii: GPL: Cross-platform: C: Implemented in OpendTect ...
Range analysis is suitable when a particular ideal mid-range particle size is being sought, while cumulative analysis is used where the amount of "under-size" or "over-size" must be controlled. The way in which "size" is expressed is open to a wide range of interpretations.
Although such information contains long lists of sieve sizes, in practice sieves are normally used in series in which each member sieve is selected to pass particles approximately 1/ √ 2 smaller in diameter or 1/2 smaller in cross-sectional area than the previous sieve. For example the series 80mm, 63, 40, 31.5, 20, 16, 14, 10, 8, 6.3, 4, 2.8 ...
Soil gradation is determined by analyzing the results of a sieve analysis or a hydrometer analysis. [4] [5] In a sieve analysis, a coarse-grained soil sample is shaken through a series of woven-wire square-mesh sieves. Each sieve has successively smaller openings so particles larger than the size of each sieve are retained on the sieve.
The Fineness Modulus (FM) is an empirical figure obtained by adding the total percentage of the sample of an aggregate retained on each of a specified series of sieves, dividing the sum by 100.
According to the Unified Soil Classification System, a #4 sieve (4 openings per inch) having 4.75 mm opening size separates sand from gravel and a #200 sieve with an 0.075 mm opening separates sand from silt and clay. According to the British standard, 0.063 mm is the boundary between sand and silt, and 2 mm is the boundary between sand and gravel.
The general number field sieve, on the other hand, manages to search for smooth numbers that are subexponential in the size of n. Since these numbers are smaller, they are more likely to be smooth than the numbers inspected in previous algorithms. This is the key to the efficiency of the number field sieve.