enow.com Web Search

  1. Ads

    related to: 3 digit by one multiplication

Search results

  1. Results from the WOW.Com Content Network
  2. Trachtenberg system - Wikipedia

    en.wikipedia.org/wiki/Trachtenberg_system

    If the answer is greater than a single digit, simply carry over the extra digit (which will be a 1 or 2) to the next operation. The remaining digit is one digit of the final result. Example: Determine neighbors in the multiplicand 0316: digit 6 has no right neighbor; digit 1 has neighbor 6; digit 3 has neighbor 1

  3. Multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Multiplication_algorithm

    Karatsuba multiplication is an O(n log 2 3) ≈ O(n 1.585) divide and conquer algorithm, that uses recursion to merge together sub calculations. By rewriting the formula, one makes it possible to do sub calculations / recursion. By doing recursion, one can solve this in a fast manner.

  4. Ternary numeral system - Wikipedia

    en.wikipedia.org/wiki/Ternary_numeral_system

    A ternary / ˈ t ɜːr n ər i / numeral system (also called base 3 or trinary [1]) has three as its base.Analogous to a bit, a ternary digit is a trit (trinary digit).One trit is equivalent to log 2 3 (about 1.58496) bits of information.

  5. Napier's bones - Wikipedia

    en.wikipedia.org/wiki/Napier's_bones

    The simplest sort of multiplication, a number with multiple digits by a number with a single digit, is done by placing rods representing the multi-digit number in the frame against the left edge. The answer is read off the row corresponding to the single-digit number which is marked on the left of the frame, with a small amount of addition ...

  6. Karatsuba algorithm - Wikipedia

    en.wikipedia.org/wiki/Karatsuba_algorithm

    In particular, if n is 2 k, for some integer k, and the recursion stops only when n is 1, then the number of single-digit multiplications is 3 k, which is n c where c = log 2 3. Since one can extend any inputs with zero digits until their length is a power of two, it follows that the number of elementary multiplications, for any n, is at most

  7. Numeral system - Wikipedia

    en.wikipedia.org/wiki/Numeral_system

    In base 10, ten different digits 0, ..., 9 are used and the position of a digit is used to signify the power of ten that the digit is to be multiplied with, as in 304 = 3×100 + 0×10 + 4×1 or more precisely 3×10 2 + 0×10 1 + 4×10 0. Zero, which is not needed in the other systems, is of crucial importance here, in order to be able to "skip ...

  1. Ads

    related to: 3 digit by one multiplication