enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Isovalent hybridization - Wikipedia

    en.wikipedia.org/wiki/Isovalent_hybridization

    For example, the C−H bond length is 110.2 pm in ethane, 108.5 pm in ethylene and 106.1 pm in acetylene, with carbon hybridizations sp 3 (25% s), sp 2 (33% s) and sp (50% s) respectively. To determine the degree of hybridization of each bond one can utilize a hybridization parameter ( λ ).

  3. Orbital hybridisation - Wikipedia

    en.wikipedia.org/wiki/Orbital_hybridisation

    For this molecule, carbon sp 2 hybridises, because one π (pi) bond is required for the double bond between the carbons and only three σ bonds are formed per carbon atom. In sp 2 hybridisation the 2s orbital is mixed with only two of the three available 2p orbitals, usually denoted 2p x and 2p y. The third 2p orbital (2p z) remains unhybridised.

  4. Carbon–hydrogen bond - Wikipedia

    en.wikipedia.org/wiki/Carbonhydrogen_bond

    A bond between a hydrogen atom and an sp 2 hybridised carbon atom is about 0.6% shorter than between hydrogen and sp 3 hybridised carbon. A bond between hydrogen and sp hybridised carbon is shorter still, about 3% shorter than sp 3 C-H. This trend is illustrated by the molecular geometry of ethane, ethylene and acetylene. [citation needed]

  5. Orbital overlap - Wikipedia

    en.wikipedia.org/wiki/Orbital_overlap

    In chemical bonds, an orbital overlap is the concentration of orbitals on adjacent atoms in the same regions of space. Orbital overlap can lead to bond formation. Linus Pauling explained the importance of orbital overlap in the molecular bond angles observed through experimentation; it is the basis for orbital hybridization.

  6. Bent's rule - Wikipedia

    en.wikipedia.org/wiki/Bent's_rule

    Shape of water molecule showing that the real bond angle 104.5° deviates from the ideal sp 3 angle of 109.5°. In chemistry, Bent's rule describes and explains the relationship between the orbital hybridization and the electronegativities of substituents. [1] [2] The rule was stated by Henry A. Bent as follows: [2]

  7. Valence bond theory - Wikipedia

    en.wikipedia.org/wiki/Valence_bond_theory

    For example, the carbon in methane (CH 4) undergoes sp 3 hybridization to form four equivalent orbitals, resulting in a tetrahedral shape. Different types of hybridization, such as sp, sp 2, and sp 3, correspond to specific molecular geometries (linear, trigonal planar, and tetrahedral), influencing the bond angles observed in molecules. Hybrid ...

  8. Linear molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Linear_molecular_geometry

    The linear molecular geometry describes the geometry around a central atom bonded to two other atoms (or ligands) placed at a bond angle of 180°. Linear organic molecules, such as acetylene (HC≡CH), are often described by invoking sp orbital hybridization for their carbon centers. Two sp orbitals

  9. Bonding molecular orbital - Wikipedia

    en.wikipedia.org/wiki/Bonding_molecular_orbital

    [6] [7] For example, in CH 4, the four electrons from the 1s orbitals of the hydrogen atoms and the valence electrons from the carbon atom (2 in s and 2 in p) occupy the bonding molecular orbitals, σ and π. [6] The delocalized MOs of the carbon atom in the molecule of methane can then be localized to give four sp 3 hybrid orbitals.