Search results
Results from the WOW.Com Content Network
Tuning a control loop is the adjustment of its control parameters (proportional band/gain, integral gain/reset, derivative gain/rate) to the optimum values for the desired control response. Stability (no unbounded oscillation) is a basic requirement, but beyond that, different systems have different behavior, different applications have ...
Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.
Proportional control, in engineering and process control, is a type of linear feedback control system in which a correction is applied to the controlled variable, and the size of the correction is proportional to the difference between the desired value (setpoint, SP) and the measured value (process variable, PV).
Partition coefficient (K D) - The ratio of concentrations of a compound in two phases of a mixture of two immiscible solvents at equilibrium. Hall coefficient (electrical physics) - Relates a magnetic field applied to an element to the voltage created, the amount of current and the element thickness. It is a characteristic of the material from ...
Meaning SI unit of measure alpha: alpha particle: angular acceleration: radian per second squared (rad/s 2) fine-structure constant: unitless beta: velocity in terms of the speed of light c: unitless beta particle: gamma: Lorentz factor: unitless photon: gamma ray: shear strain: radian
First order LTI systems are characterized by the differential equation + = where τ represents the exponential decay constant and V is a function of time t = (). The right-hand side is the forcing function f(t) describing an external driving function of time, which can be regarded as the system input, to which V(t) is the response, or system output.
This definition agrees with that given by the article by Sussmann and Willems. [13] (see p. 39, equation 14). Sussmann and Willems show how the control Hamiltonian can be used in dynamics e.g. for the brachistochrone problem, but do not mention the prior work of Carathéodory on this approach. [14]
Also, the magnitude of the control signal increases significantly as the sampling period decreases. Thus, careful selection of the sampling period is crucial when employing this control method. [2] Finally, since the controller is based upon cancelling plant poles and zeros, these must be known precisely, otherwise the controller will not be ...