Search results
Results from the WOW.Com Content Network
Photon energy can be expressed using any energy unit. Among the units commonly used to denote photon energy are the electronvolt (eV) and the joule (as well as its multiples, such as the microjoule). As one joule equals 6.24 × 10 18 eV, the larger units may be more useful in denoting the energy of photons with higher frequency and higher ...
The einstein (symbol E) is an obsolete unit with two conflicting definitions. It was originally defined as the energy in one mole of photons (6.022 × 10 23 photons). [1] [2] Because energy is inversely proportional to wavelength, the unit is frequency dependent. This unit is not part of the International System of Units (SI) and is redundant ...
The energy content of this volume element at 5 km from the station is 2.1 × 10 −10 × 0.109 = 2.3 × 10 −11 J, which amounts to 3.4 × 10 14 photons per (). Since 3.4 × 10 14 > 1, quantum effects do not play a role. The waves emitted by this station are well-described by the classical limit and quantum mechanics is not needed.
In the case that the photon has mass, the mass term 1 / 2 m 2 A μ A μ would affect the galactic plasma. The fact that no such effects are seen implies an upper bound on the photon mass of m < 3 × 10 −27 eV/c 2. [37] The galactic vector potential can also be probed directly by measuring the torque exerted on a magnetized ring. [38]
In atomic physics, Rydberg unit of energy, symbol Ry, corresponds to the energy of the photon whose wavenumber is the Rydberg constant, i.e. the ionization energy of the hydrogen atom in a simplified Bohr model.
The original is a unit of energy, equal to the energy in one mole (1 mol) of photons. The second is a unit of amount of photons, equal to one mole (1 mol) of photons. The rayleigh (R) is a unit of photon flux rate density equal to 10 10 m −2 ⋅s −1 (10 4 mm −2 ⋅s −1).
photon energy: n: 1: count of photons n with energy Q p = h c/λ. [nb 2] photon flux: Φ q: count per second: s −1: T −1: photons per unit time, dn/dt with n = photon number. also called photon power: photon intensity: I: count per steradian per second sr −1 ⋅s −1: T −1: dn/dω: photon radiance: L q: count per square metre per ...
The Planck relation [1] [2] [3] (referred to as Planck's energy–frequency relation, [4] the Planck–Einstein relation, [5] Planck equation, [6] and Planck formula, [7] though the latter might also refer to Planck's law [8] [9]) is a fundamental equation in quantum mechanics which states that the energy E of a photon, known as photon energy, is proportional to its frequency ν: =.