Search results
Results from the WOW.Com Content Network
In the field of differential geometry in mathematics, mean curvature flow is an example of a geometric flow of hypersurfaces in a Riemannian manifold (for example, smooth surfaces in 3-dimensional Euclidean space).
A Riemannian manifold is a smooth manifold together with a Riemannian metric. The techniques of differential and integral calculus are used to pull geometric data out of the Riemannian metric. For example, integration leads to the Riemannian distance function, whereas differentiation is used to define curvature and parallel transport.
A regular homotopy between two immersions f and g from a manifold M to a manifold N is defined to be a differentiable function H : M × [0,1] → N such that for all t in [0, 1] the function H t : M → N defined by H t (x) = H(x, t) for all x ∈ M is an immersion, with H 0 = f, H 1 = g. A regular homotopy is thus a homotopy through immersions.
Using this, we can consider an SDE on the orthonormal frame bundle of a Riemannian manifold, whose solution is Brownian motion, and projects down to the (base) manifold via stochastic development. A visual representation of this construction corresponds to the construction of a spherical Brownian motion by rolling without slipping the manifold ...
An affine connection on a Riemannian manifold is a way of differentiating vector fields with respect to other vector fields. A Riemannian manifold has a natural choice of affine connection called the Levi-Civita connection. Given a fixed affine connection on a Riemannian manifold, there is a unique way to do parallel transport of tangent ...
The class ManifoldOpenSubset has been suppressed: open subsets of manifolds are now instances of TopologicalManifold or DifferentiableManifold (since an open subset of a top/diff manifold is a top/diff manifold by itself) Functions defined on a coordinate patch are no longer necessarily symbolic functions of the coordinates: they now pertain to ...
An example of a Riemannian submersion arises when a Lie group acts isometrically, freely and properly on a Riemannian manifold (,). The projection π : M → N {\displaystyle \pi :M\rightarrow N} to the quotient space N = M / G {\displaystyle N=M/G} equipped with the quotient metric is a Riemannian submersion.
The technical statement appearing in Nash's original paper is as follows: if M is a given m-dimensional Riemannian manifold (analytic or of class C k, 3 ≤ k ≤ ∞), then there exists a number n (with n ≤ m(3m+11)/2 if M is a compact manifold, and with n ≤ m(m+1)(3m+11)/2 if M is a non-compact manifold) and an isometric embedding ƒ: M → R n (also analytic or of class C k). [15]