enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Riemannian manifold - Wikipedia

    en.wikipedia.org/wiki/Riemannian_manifold

    A Riemannian manifold is a smooth manifold together with a Riemannian metric. The techniques of differential and integral calculus are used to pull geometric data out of the Riemannian metric. For example, integration leads to the Riemannian distance function, whereas differentiation is used to define curvature and parallel transport.

  3. Distribution (differential geometry) - Wikipedia

    en.wikipedia.org/wiki/Distribution_(differential...

    Distributions satisfying a further integrability condition give rise to foliations, i.e. partitions of the manifold into smaller submanifolds. These notions have several applications in many fields of mathematics, including integrable systems, Poisson geometry, non-commutative geometry, sub-Riemannian geometry, differential topology.

  4. Stochastic analysis on manifolds - Wikipedia

    en.wikipedia.org/wiki/Stochastic_analysis_on...

    Using this, we can consider an SDE on the orthonormal frame bundle of a Riemannian manifold, whose solution is Brownian motion, and projects down to the (base) manifold via stochastic development. A visual representation of this construction corresponds to the construction of a spherical Brownian motion by rolling without slipping the manifold ...

  5. Laplace–Beltrami operator - Wikipedia

    en.wikipedia.org/wiki/Laplace–Beltrami_operator

    On a Riemannian manifold it is an elliptic operator, while on a Lorentzian manifold it is hyperbolic. The Laplace–de Rham operator is defined by = + = (+), where d is the exterior derivative or differential and δ is the codifferential, acting as (−1) kn+n+1 ∗d∗ on k-forms, where ∗ is the Hodge star.

  6. List of formulas in Riemannian geometry - Wikipedia

    en.wikipedia.org/wiki/List_of_formulas_in...

    Let be a smooth manifold and let be a one-parameter family of Riemannian or pseudo-Riemannian metrics. Suppose that it is a differentiable family in the sense that for any smooth coordinate chart, the derivatives v i j = ∂ ∂ t ( ( g t ) i j ) {\displaystyle v_{ij}={\frac {\partial }{\partial t}}{\big (}(g_{t})_{ij}{\big )}} exist and are ...

  7. Differentiable manifold - Wikipedia

    en.wikipedia.org/wiki/Differentiable_manifold

    The notion of a differentiable manifold refines that of a manifold by requiring the functions that transform between charts to be differentiable. In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus.

  8. Sage Manifolds - Wikipedia

    en.wikipedia.org/wiki/Sage_Manifolds

    Introduction of Manifold.options to control the display of mathematical expressions instead of the global functions nice_derivatives and omit_function_args, which have been suppressed Function set_axes_labels (to set labels on 3D plots) no longer imported at the startup time; if required, one has to type from sage.manifolds.utilities import set ...

  9. Density on a manifold - Wikipedia

    en.wikipedia.org/wiki/Density_on_a_manifold

    On an oriented manifold, 1-densities can be canonically identified with the n-forms on M. On non-orientable manifolds this identification cannot be made, since the density bundle is the tensor product of the orientation bundle of M and the n-th exterior product bundle of T ∗ M (see pseudotensor).