Search results
Results from the WOW.Com Content Network
A Riemannian manifold is a smooth manifold together with a Riemannian metric. The techniques of differential and integral calculus are used to pull geometric data out of the Riemannian metric. For example, integration leads to the Riemannian distance function, whereas differentiation is used to define curvature and parallel transport.
On an oriented manifold, 1-densities can be canonically identified with the n-forms on M. On non-orientable manifolds this identification cannot be made, since the density bundle is the tensor product of the orientation bundle of M and the n-th exterior product bundle of T ∗ M (see pseudotensor).
The notion of a differentiable manifold refines that of a manifold by requiring the functions that transform between charts to be differentiable. In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus.
Just as there are various types of manifolds, there are various types of maps of manifolds. PDIFF serves to relate DIFF and PL, and it is equivalent to PL.. In geometric topology, the basic types of maps correspond to various categories of manifolds: DIFF for smooth functions between differentiable manifolds, PL for piecewise linear functions between piecewise linear manifolds, and TOP for ...
Using this, we can consider an SDE on the orthonormal frame bundle of a Riemannian manifold, whose solution is Brownian motion, and projects down to the (base) manifold via stochastic development. A visual representation of this construction corresponds to the construction of a spherical Brownian motion by rolling without slipping the manifold ...
Let be a smooth manifold and let be a one-parameter family of Riemannian or pseudo-Riemannian metrics. Suppose that it is a differentiable family in the sense that for any smooth coordinate chart, the derivatives v i j = ∂ ∂ t ( ( g t ) i j ) {\displaystyle v_{ij}={\frac {\partial }{\partial t}}{\big (}(g_{t})_{ij}{\big )}} exist and are ...
In the mathematical field of differential geometry, a smooth map between Riemannian manifolds is called harmonic if its coordinate representatives satisfy a certain nonlinear partial differential equation. This partial differential equation for a mapping also arises as the Euler-Lagrange equation of a functional called the Dirichlet energy.
The more general case of a hypersurface in a Riemannian manifold requires additional terms to do with the Riemann curvature tensor. [4] In the even more general setting of arbitrary codimension, the formula involves a complicated polynomial in the second fundamental form.