Search results
Results from the WOW.Com Content Network
Dimethyl oxalate can be converted into ethylene glycol in high yields (94.7%) [10] [11] The methanol formed is recycled in the process of oxidative carbonylation. [12] Other plants with a total annual capacity of more than 1 million tons of ethylene glycol per year are planned. Decarbonylation gives dimethyl carbonate. [13]
The preparation of dimethyl oxalate by oxidative carbonylation has also attracted commercial interest. It requires only C1 precursors : [ 3 ] 4 CO + O 2 + 4 MeOH → 2 (MeO 2 C) 2 + 2 H 2 O
Oxalate (systematic IUPAC name: ethanedioate) is an anion with the chemical formula C 2 O 2− 4. This dianion is colorless. It occurs naturally, including in some foods. It forms a variety of salts, for example sodium oxalate (Na 2 C 2 O 4), and several esters such as dimethyl oxalate ((CH 3) 2 C 2 O 4). It is a conjugate base of oxalic acid.
In organic chemistry, the Swern oxidation, named after Daniel Swern, is a chemical reaction whereby a primary or secondary alcohol (−OH) is oxidized to an aldehyde (−CH=O) or ketone (>C=O) using oxalyl chloride, dimethyl sulfoxide (DMSO) and an organic base, such as triethylamine.
Transition metal oxalate complexes are coordination complexes with oxalate (C 2 O 4 2−) ligands. Some are useful commercially, but the topic has attracted regular scholarly scrutiny. Oxalate (C 2 O 4 2-) is a kind of dicarboxylate ligand. [1] As a small, symmetrical dinegative ion, oxalate commonly forms five-membered MO 2 C 2 chelate rings.
The Seyferth–Gilbert homologation is a chemical reaction of an aryl ketone 1 (or aldehyde) with dimethyl (diazomethyl)phosphonate 2 and potassium tert-butoxide to give substituted alkynes 3. [1] [2] Dimethyl (diazomethyl)phosphonate 2 is often called the Seyferth–Gilbert reagent. [3] The Seyferth–Gilbert homologation
The Parikh–Doering oxidation is an oxidation reaction that transforms primary and secondary alcohols into aldehydes and ketones, respectively. [1] The procedure uses dimethyl sulfoxide (DMSO) as the oxidant and the solvent, activated by the sulfur trioxide pyridine complex (SO 3 •C 5 H 5 N) in the presence of triethylamine or diisopropylethylamine as base.
The reaction is particularly suitable for the synthesis of aldehydes from primary alcohols. Analogously, secondary alcohols can be oxidized to form ketones. Dimethyl sulfoxide/acetic anhydride serves as oxidizing agent. Albright-Goldman-Oxidation (Aldehyd) The reaction does not proceed further to the carboxylic acid.