enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mauchly's sphericity test - Wikipedia

    en.wikipedia.org/wiki/Mauchly's_sphericity_test

    Interpreting Mauchly's test is fairly straightforward. When the probability of Mauchly's test statistic is greater than or equal to α {\displaystyle \alpha } (i.e., p > α {\displaystyle \alpha } , with α {\displaystyle \alpha } commonly being set to .05), we fail to reject the null hypothesis that the variances are equal.

  3. Univariate (statistics) - Wikipedia

    en.wikipedia.org/wiki/Univariate_(statistics)

    Univariate is a term commonly used in statistics to describe a type of data which consists of observations on only a single characteristic or attribute. A simple example of univariate data would be the salaries of workers in industry. [ 1 ]

  4. List of statistical tests - Wikipedia

    en.wikipedia.org/wiki/List_of_statistical_tests

    Shapiro–Wilk test: interval: univariate: 1: Normality test: sample size between 3 and 5000 [16] Kolmogorov–Smirnov test: interval: 1: Normality test: distribution parameters known [16] Shapiro-Francia test: interval: univariate: 1: Normality test: Simpliplification of Shapiro–Wilk test Lilliefors test: interval: 1: Normality test

  5. General linear model - Wikipedia

    en.wikipedia.org/wiki/General_linear_model

    Hypothesis tests with the general linear model can be made in two ways: multivariate or as several independent univariate tests. In multivariate tests the columns of Y are tested together, whereas in univariate tests the columns of Y are tested independently, i.e., as multiple univariate tests with the same design matrix.

  6. Grubbs's test - Wikipedia

    en.wikipedia.org/wiki/Grubbs's_test

    In statistics, Grubbs's test or the Grubbs test (named after Frank E. Grubbs, who published the test in 1950 [1]), also known as the maximum normalized residual test or extreme studentized deviate test, is a test used to detect outliers in a univariate data set assumed to come from a normally distributed population.

  7. Cochran's C test - Wikipedia

    en.wikipedia.org/wiki/Cochran's_C_test

    Cochran's test, [1] named after William G. Cochran, is a one-sided upper limit variance outlier statistical test .The C test is used to decide if a single estimate of a variance (or a standard deviation) is significantly larger than a group of variances (or standard deviations) with which the single estimate is supposed to be comparable.

  8. Tukey's range test - Wikipedia

    en.wikipedia.org/wiki/Tukey's_range_test

    Tukey's range test, also known as Tukey's test, Tukey method, Tukey's honest significance test, or Tukey's HSD (honestly significant difference) test, [1] is a single-step multiple comparison procedure and statistical test. It can be used to correctly interpret the statistical significance of the difference between means that have been selected ...

  9. Hodges–Lehmann estimator - Wikipedia

    en.wikipedia.org/wiki/Hodges–Lehmann_estimator

    In the simplest case, the "Hodges–Lehmann" statistic estimates the location parameter for a univariate population. [2] [3] Its computation can be described quickly.For a dataset with n measurements, the set of all possible two-element subsets of it (,) such that ≤ (i.e. specifically including self-pairs; many secondary sources incorrectly omit this detail), which set has n(n + 1)/2 elements.