Search results
Results from the WOW.Com Content Network
The plot is occasionally attributed to Augustinsson [5] and referred to the Woolf–Augustinsson–Hofstee plot [6] [7] [8] or simply the Augustinsson plot. [9] However, although Haldane, Woolf or Eadie were not explicitly cited when Augustinsson introduced the versus / equation, both the work of Haldane [10] and of Eadie [3] are cited at other places of his work and are listed in his ...
While the Lineweaver–Burk plot has historically been used for evaluation of the parameters, together with the alternative linear forms of the Michaelis–Menten equation such as the Hanes–Woolf plot or Eadie–Hofstee plot, all linearized forms of the Michaelis–Menten equation should be avoided to calculate the kinetic parameters ...
Human enzymes start to denature quickly at temperatures above 40 °C. Enzymes from thermophilic archaea found in the hot springs are stable up to 100 °C. [13] However, the idea of an "optimum" rate of an enzyme reaction is misleading, as the rate observed at any temperature is the product of two rates, the reaction rate and the denaturation rate.
The number of notable protein-ligand docking programs currently available is high and has been steadily increasing over the last decades. The following list presents an overview of the most common notable programs, listed alphabetically, with indication of the corresponding year of publication, involved organisation or institution, short description, availability of a webservice and the license.
The best known plots of the Michaelis–Menten equation, including the double-reciprocal plot of / against /, [2] the Hanes plot of / against , [3] and the Eadie–Hofstee plot [4] [5] of against / are all plots in observation space, with each observation represented by a point, and the parameters determined from the slope and intercepts of the lines that result.
A decade before Michaelis and Menten, Victor Henri found that enzyme reactions could be explained by assuming a binding interaction between the enzyme and the substrate. [11] His work was taken up by Michaelis and Menten, who investigated the kinetics of invertase, an enzyme that catalyzes the hydrolysis of sucrose into glucose and fructose. [12]
The katal (symbol: kat) is that catalytic activity that will raise the rate of conversion by one mole per second in a specified assay system. [1] It is a unit of the International System of Units (SI) [1] used for quantifying the catalytic activity of enzymes (that is, measuring the enzymatic activity level in enzyme catalysis) and other catalysts.
In enzymology, the turnover number (k cat) is defined as the limiting number of chemical conversions of substrate molecules per second that a single active site will execute for a given enzyme concentration [E T] for enzymes with two or more active sites. [1] For enzymes with a single active site, k cat is referred to as the catalytic constant. [2]