Search results
Results from the WOW.Com Content Network
For example, if V is an m × n matrix, W is an m × p matrix, and H is a p × n matrix then p can be significantly less than both m and n. Here is an example based on a text-mining application: Let the input matrix (the matrix to be factored) be V with 10000 rows and 500 columns where words are in rows and documents are in columns.
Excel maintains 15 figures in its numbers, but they are not always accurate; mathematically, the bottom line should be the same as the top line, in 'fp-math' the step '1 + 1/9000' leads to a rounding up as the first bit of the 14 bit tail '10111000110010' of the mantissa falling off the table when adding 1 is a '1', this up-rounding is not undone when subtracting the 1 again, since there is no ...
For many problems in applied linear algebra, it is useful to adopt the perspective of a matrix as being a concatenation of column vectors. For example, when solving the linear system =, rather than understanding x as the product of with b, it is helpful to think of x as the vector of coefficients in the linear expansion of b in the basis formed by the columns of A.
When one does not know the exact solution, one may look for the approximation with small residual. Residuals appear in many areas in mathematics, including iterative solvers such as the generalized minimal residual method , which seeks solutions to equations by systematically minimizing the residual.
Time series of the Tent map for the parameter m=2.0 which shows numerical error: "the plot of time series (plot of x variable with respect to number of iterations) stops fluctuating and no values are observed after n=50". Parameter m= 2.0, initial point is random.
If a term in the above particular integral for y appears in the homogeneous solution, it is necessary to multiply by a sufficiently large power of x in order to make the solution independent. If the function of x is a sum of terms in the above table, the particular integral can be guessed using a sum of the corresponding terms for y. [1]
Whereas linear conjugate gradient seeks a solution to the linear equation =, the nonlinear conjugate gradient method is generally used to find the local minimum of a nonlinear function using its gradient alone. It works when the function is approximately quadratic near the minimum, which is the case when the function is twice differentiable at ...
The result, x 2, is a "better" approximation to the system's solution than x 1 and x 0. If exact arithmetic were to be used in this example instead of limited-precision, then the exact solution would theoretically have been reached after n = 2 iterations (n being the order of the system).