enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sequential quadratic programming - Wikipedia

    en.wikipedia.org/wiki/Sequential_quadratic...

    Sequential quadratic programming (SQP) is an iterative method for constrained nonlinear optimization, also known as Lagrange-Newton method.SQP methods are used on mathematical problems for which the objective function and the constraints are twice continuously differentiable, but not necessarily convex.

  3. Quadratic programming - Wikipedia

    en.wikipedia.org/wiki/Quadratic_programming

    [6] Ye and Tse [7] present a polynomial-time algorithm, which extends Karmarkar's algorithm from linear programming to convex quadratic programming. On a system with n variables and L input bits, their algorithm requires O(L n) iterations, each of which can be done using O(L n 3) arithmetic operations, for a total runtime complexity of O(L 2 n 4).

  4. Quasi-Newton method - Wikipedia

    en.wikipedia.org/wiki/Quasi-Newton_method

    In the SciPy extension to Python, the scipy.optimize.minimize function includes, among other methods, a BFGS implementation. [8] Notable proprietary implementations include: Mathematica includes quasi-Newton solvers. [9] The NAG Library contains several routines [10] for minimizing or maximizing a function [11] which use quasi-Newton algorithms.

  5. Sum-of-squares optimization - Wikipedia

    en.wikipedia.org/wiki/Sum-of-Squares_Optimization

    A sum-of-squares optimization program is an optimization problem with a linear cost function and a particular type of constraint on the decision variables. These constraints are of the form that when the decision variables are used as coefficients in certain polynomials, those polynomials should have the polynomial SOS property.

  6. Gekko (optimization software) - Wikipedia

    en.wikipedia.org/wiki/Gekko_(optimization_software)

    GEKKO works on all platforms and with Python 2.7 and 3+. By default, the problem is sent to a public server where the solution is computed and returned to Python. There are Windows, MacOS, Linux, and ARM (Raspberry Pi) processor options to solve without an Internet connection.

  7. Constrained optimization - Wikipedia

    en.wikipedia.org/wiki/Constrained_optimization

    This method [6] runs a branch-and-bound algorithm on problems, where is the number of variables. Each such problem is the subproblem obtained by dropping a sequence of variables x 1 , … , x i {\displaystyle x_{1},\ldots ,x_{i}} from the original problem, along with the constraints containing them.

  8. Mathematical optimization - Wikipedia

    en.wikipedia.org/wiki/Mathematical_optimization

    This represents the value (or values) of the argument x in the interval (−∞,−1] that minimizes (or minimize) the objective function x 2 + 1 (the actual minimum value of that function is not what the problem asks for). In this case, the answer is x = −1, since x = 0 is infeasible, that is, it does not belong to the feasible set. Similarly,

  9. Least squares - Wikipedia

    en.wikipedia.org/wiki/Least_squares

    The result of fitting a set of data points with a quadratic function Conic fitting a set of points using least-squares approximation. In regression analysis, least squares is a parameter estimation method based on minimizing the sum of the squares of the residuals (a residual being the difference between an observed value and the fitted value provided by a model) made in the results of each ...