enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ultimate tensile strength - Wikipedia

    en.wikipedia.org/wiki/Ultimate_tensile_strength

    The ultimate tensile strength of a material is an intensive property; therefore its value does not depend on the size of the test specimen.However, depending on the material, it may be dependent on other factors, such as the preparation of the specimen, the presence or otherwise of surface defects, and the temperature of the test environment and material.

  3. Strength of materials - Wikipedia

    en.wikipedia.org/wiki/Strength_of_materials

    Compressive strength is a limit state of compressive stress that leads to failure in a material in the manner of ductile failure (infinite theoretical yield) or brittle failure (rupture as the result of crack propagation, or sliding along a weak plane – see shear strength). Tensile strength or ultimate tensile strength is a limit state of ...

  4. Structural engineering theory - Wikipedia

    en.wikipedia.org/wiki/Structural_engineering_theory

    Strength depends upon material properties. The strength of a material depends on its capacity to withstand axial stress, shear stress, bending, and torsion.The strength of a material is measured in force per unit area (newtons per square millimetre or N/mm², or the equivalent megapascals or MPa in the SI system and often pounds per square inch psi in the United States Customary Units system).

  5. Young's modulus - Wikipedia

    en.wikipedia.org/wiki/Young's_modulus

    Young's modulus is the slope of the linear part of the stress–strain curve for a material under tension or compression.. Young's modulus (or Young modulus) is a mechanical property of solid materials that measures the tensile or compressive stiffness when the force is applied lengthwise.

  6. Vickers hardness test - Wikipedia

    en.wikipedia.org/wiki/Vickers_hardness_test

    Estimating tensile strength [ edit ] If HV is first expressed in N/mm 2 (MPa), or otherwise by converting from kgf/mm 2 , then the tensile strength (in MPa) of the material can be approximated as σ u ≈ HV/ c , where c is a constant determined by yield strength, Poisson's ratio, work-hardening exponent and geometrical factors – usually ...

  7. Lists of physics equations - Wikipedia

    en.wikipedia.org/wiki/Lists_of_physics_equations

    In physics, there are equations in every field to relate physical quantities to each other and perform calculations. Entire handbooks of equations can only summarize most of the full subject, else are highly specialized within a certain field. Physics is derived of formulae only.

  8. Strengthening mechanisms of materials - Wikipedia

    en.wikipedia.org/wiki/Strengthening_mechanisms...

    Tensile strengths of TRIP steels are in the range of 600-960 MPa. Martensitic steels are also high in C and Mn. These are fully quenched to martensite during processing. The martensite structure is then tempered back to the appropriate strength level, adding toughness to the steel. Tensile strengths for these steels range as high as 1500 MPa.

  9. Huber's equation - Wikipedia

    en.wikipedia.org/wiki/Huber's_equation

    Huber's equation, first derived by a Polish engineer Tytus Maksymilian Huber, is a basic formula in elastic material tension calculations, an equivalent of the equation of state, but applying to solids. In most simple expression and commonly in use it looks like this: [1]