Search results
Results from the WOW.Com Content Network
UVM agent classes are implemented as subclasses of the uvm_agent class, which itself is a subclass of uvm_component. Much like uvm_scoreboard, uvm_agent is lightweight in terms of class methods. Its only class methods are the "new" constructor and the "get_is_active" method. If the agent is being used to drive ports, get_is_active returns UVM ...
Other systems utilize weather stations that monitor environmental conditions without contacting the line. Data received from any method is reported to a main computer for processing. Control center operators access usable data (line temperature, ratings, forecasts, historical values) in pseudo-real-time through a human-machine interface (HMI).
Polymers represent another large area in which thermal analysis finds strong applications. Thermoplastic polymers are commonly found in everyday packaging and household items, but for the analysis of the raw materials, effects of the many additive used (including stabilisers and colours) and fine-tuning of the moulding or extrusion processing used can be achieved by using differential scanning ...
Thermomechanical analysis (TMA) is a technique used in thermal analysis, a branch of materials science which studies the properties of materials as they change with temperature. Thermomechanical analysis is a subdiscipline of the thermomechanometry (TM) technique.
The most promising and widespread non-invasive thermometric techniques in a biotech context are based on the analysis of magnetic resonance images, computerized tomography images and echotomography. These techniques allow monitoring temperature within tissues without introducing a sensing element. [2]
In 2013, Cowtan and Way suggested [29] [30] that global temperature averages based on surface temperature data had a possible source of bias due to incomplete global coverage if the unsampled regions are not uniformly distributed over the planet's surface. They addressed this problem by combining the surface temperature measurements with ...
In thermal engineering, the logarithmic mean temperature difference (LMTD) is used to determine the temperature driving force for heat transfer in flow systems, most notably in heat exchangers. The LMTD is a logarithmic average of the temperature difference between the hot and cold feeds at each end of the double pipe exchanger.
The process data is represented as a set of energy flows, or streams, as a function of heat load (product of specific enthalpy and mass flow rate; SI unit W) against temperature (SI unit K). These data are combined for all the streams in the plant to give composite curves, one for all hot streams (releasing heat) and one for all cold streams ...