Search results
Results from the WOW.Com Content Network
Another example for an implicit Runge–Kutta method is the trapezoidal rule. Its Butcher tableau is: The trapezoidal rule is a collocation method (as discussed in that article). All collocation methods are implicit Runge–Kutta methods, but not all implicit Runge–Kutta methods are collocation methods.
In the first example provided above, the sex of the patient would be a nuisance variable. For example, consider if the drug was a diet pill and the researchers wanted to test the effect of the diet pills on weight loss. The explanatory variable is the diet pill and the response variable is the amount of weight loss.
In theoretical computer science, the term isolation lemma (or isolating lemma) refers to randomized algorithms that reduce the number of solutions to a problem to one, should a solution exist. This is achieved by constructing random constraints such that, with non-negligible probability, exactly one solution satisfies these additional ...
Such a procedure is called root isolation, and a resulting interval that contains exactly one root is an isolating interval for this root. Wilkinson's polynomial shows that a very small modification of one coefficient of a polynomial may change dramatically not only the value of the roots, but also their nature (real or complex).
In complex analysis, a branch of mathematics, an isolated singularity is one that has no other singularities close to it. In other words, a complex number z 0 is an isolated singularity of a function f if there exists an open disk D centered at z 0 such that f is holomorphic on D \ {z 0}, that is, on the set obtained from D by taking z 0 out.
An example of isolating an anomalous point in a 2D Gaussian distribution. An example of random partitioning in a 2D dataset of normally distributed points is shown in the first figure for a non-anomalous point and in the second one for a point that is more likely to be an anomaly. It is apparent from the pictures how anomalies require fewer ...
Thus, when one separates variables for first-order equations, one in fact moves the dx denominator of the operator to the side with the x variable, and the d(y) is left on the side with the y variable. The second-derivative operator, by analogy, breaks down as follows:
In his fundamental papers, [1] [2] [3] Vincent presented examples that show precisely how to use his theorem to isolate real roots of polynomials with continued fractions. However the resulting method had exponential computing time, a fact that mathematicians must have realized then, as was realized by Uspensky [ 8 ] p. 136, a century later.