Search results
Results from the WOW.Com Content Network
Maximum subarray problems arise in many fields, such as genomic sequence analysis and computer vision.. Genomic sequence analysis employs maximum subarray algorithms to identify important biological segments of protein sequences that have unusual properties, by assigning scores to points within the sequence that are positive when a motif to be recognized is present, and negative when it is not ...
In computer science, array is a data type that represents a collection of elements (values or variables), each selected by one or more indices (identifying keys) that can be computed at run time during program execution. Such a collection is usually called an array variable or array value. [1]
A common algorithm design tactic is to divide a problem into sub-problems of the same type as the original, solve those sub-problems, and combine the results. This is often referred to as the divide-and-conquer method; when combined with a lookup table that stores the results of previously solved sub-problems (to avoid solving them repeatedly and incurring extra computation time), it can be ...
var m := map(0 → 0, 1 → 1) function fib(n) if key n is not in map m m[n] := fib(n − 1) + fib(n − 2) return m[n] This technique of saving values that have already been calculated is called memoization ; this is the top-down approach, since we first break the problem into subproblems and then calculate and store values.
Function rank is an important concept to array programming languages in general, by analogy to tensor rank in mathematics: functions that operate on data may be classified by the number of dimensions they act on. Ordinary multiplication, for example, is a scalar ranked function because it operates on zero-dimensional data (individual numbers).
The table C shown below, which is generated by the function LCSLength, shows the lengths of the longest common subsequences between prefixes of and . The i {\displaystyle i} th row and j {\displaystyle j} th column shows the length of the LCS between X 1.. i {\displaystyle X_{1..i}} and Y 1.. j {\displaystyle Y_{1..j}} .
This subsequence has length six; the input sequence has no seven-member increasing subsequences. The longest increasing subsequence in this example is not the only solution: for instance, 0, 4, 6, 9, 11, 15 0, 2, 6, 9, 13, 15 0, 4, 6, 9, 13, 15. are other increasing subsequences of equal length in the same input sequence.
To pick out a subsequence, first pick a binary function , such that given any binary string :, it outputs either 0 or 1. If it outputs 1, then we add + to the subsequence, else we continue. In this definition, some admissible rules might abstain forever on some sequences, and thus fail to pick out an infinite subsequence.