enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Logarithmic derivative - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_derivative

    In mathematics, specifically in calculus and complex analysis, the logarithmic derivative of a function f is defined by the formula ′ where ′ is the derivative of f. [1] Intuitively, this is the infinitesimal relative change in f ; that is, the infinitesimal absolute change in f, namely f ′ , {\displaystyle f',} scaled by the current ...

  3. Logarithmic differentiation - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_differentiation

    In calculus, logarithmic differentiation or differentiation by taking logarithms is a method used to differentiate functions by employing the logarithmic derivative of a function f, [1] (⁡) ′ = ′ ′ = (⁡) ′.

  4. Differentiation rules - Wikipedia

    en.wikipedia.org/wiki/Differentiation_rules

    The logarithmic derivative is another way of stating the rule for differentiating the logarithm of a function (using the chain rule): (⁡) ′ = ′, wherever is positive. Logarithmic differentiation is a technique which uses logarithms and its differentiation rules to simplify certain expressions before actually applying the derivative.

  5. Natural logarithm - Wikipedia

    en.wikipedia.org/wiki/Natural_logarithm

    The natural logarithm of a number is its logarithm to the base of the mathematical constant e, which is an irrational and transcendental number approximately equal to 2.718 281 828 459. [1] The natural logarithm of x is generally written as ln x, log e x, or sometimes, if the base e is implicit, simply log x.

  6. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    The identities of logarithms can be used to approximate large numbers. Note that log b (a) + log b (c) = log b (ac), where a, b, and c are arbitrary constants. Suppose that one wants to approximate the 44th Mersenne prime, 2 32,582,657 −1. To get the base-10 logarithm, we would multiply 32,582,657 by log 10 (2), getting 9,808,357.09543 ...

  7. Digamma function - Wikipedia

    en.wikipedia.org/wiki/Digamma_function

    As x goes to infinity, ψ(x) gets arbitrarily close to both ln(x − ⁠ 1 / 2 ⁠) and ln x. Going down from x + 1 to x, ψ decreases by ⁠ 1 / x ⁠, ln(x − ⁠ 1 / 2 ⁠) decreases by ln(x + ⁠ 1 / 2 ⁠) / (x − ⁠ 1 / 2 ⁠), which is more than ⁠ 1 / x ⁠, and ln x decreases by ln(1 + ⁠ 1 / x ⁠), which is less than ⁠ 1 / x ...

  8. Logarithm - Wikipedia

    en.wikipedia.org/wiki/Logarithm

    As an integral, ln(t) equals the area between the x-axis and the graph of the function 1/x, ranging from x = 1 to x = t. This is a consequence of the fundamental theorem of calculus and the fact that the derivative of ln(x) is 1/x. Product and power logarithm formulas can be derived from this definition. [41]

  9. Gamma function - Wikipedia

    en.wikipedia.org/wiki/Gamma_function

    The logarithmic derivative of the gamma function is called the digamma function; higher derivatives are the polygamma functions. The analog of the gamma function over a finite field or a finite ring is the Gaussian sums , a type of exponential sum .