Search results
Results from the WOW.Com Content Network
Stochastic approximation methods are a family of iterative methods typically used for root-finding problems or for optimization problems. The recursive update rules of stochastic approximation methods can be used, among other things, for solving linear systems when the collected data is corrupted by noise, or for approximating extreme values of functions which cannot be computed directly, but ...
Simultaneous perturbation stochastic approximation (SPSA) is an algorithmic method for optimizing systems with multiple unknown parameters. It is a type of stochastic approximation algorithm. As an optimization method, it is appropriately suited to large-scale population models, adaptive modeling, simulation optimization , and atmospheric ...
In Itô calculus, the Euler–Maruyama method (also simply called the Euler method) is a method for the approximate numerical solution of a stochastic differential equation (SDE). It is an extension of the Euler method for ordinary differential equations to stochastic differential equations named after Leonhard Euler and Gisiro Maruyama. The ...
In such cases, knowledge that the function values are contaminated by random "noise" leads naturally to algorithms that use statistical inference tools to estimate the "true" values of the function and/or make statistically optimal decisions about the next steps. Methods of this class include:
This method is applied to a certain optimization problem when its derivatives are unavailable or unreliable. Derivative-free methods establish a model based on sample function values or directly draw a sample set of function values without exploiting a detailed model. Since it needs no derivatives, it cannot be compared to derivative-based methods.
In the field of mathematical optimization, stochastic programming is a framework for modeling optimization problems that involve uncertainty. A stochastic program is an optimization problem in which some or all problem parameters are uncertain, but follow known probability distributions .
In numerical methods for stochastic differential equations, the Markov chain approximation method (MCAM) belongs to the several numerical (schemes) approaches used in stochastic control theory. Regrettably the simple adaptation of the deterministic schemes for matching up to stochastic models such as the Runge–Kutta method does not work at all.
Consider the autonomous Itō stochastic differential equation: = + with initial condition =, where denotes the Wiener process, and suppose that we wish to solve this SDE on some interval of time [,]. Then the Milstein approximation to the true solution X {\displaystyle X} is the Markov chain Y {\displaystyle Y} defined as follows: