enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fixed-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_arithmetic

    A fixed-point representation of a fractional number is essentially an integer that is to be implicitly multiplied by a fixed scaling factor. For example, the value 1.23 can be stored in a variable as the integer value 1230 with implicit scaling factor of 1/1000 (meaning that the last 3 decimal digits are implicitly assumed to be a decimal fraction), and the value 1 230 000 can be represented ...

  3. Scale factor (computer science) - Wikipedia

    en.wikipedia.org/wiki/Scale_factor_(computer...

    In computers, which perform calculations in binary, the real number is multiplied by 2 m to preserve m digits to the right of the binary point; alternatively, one can bit shift the value m places to the left. For example, in the following set of real world fractional values, all have three digits to the right of the decimal point:

  4. Numeric precision in Microsoft Excel - Wikipedia

    en.wikipedia.org/wiki/Numeric_precision_in...

    Here the 'IEEE 754 double value' resulting of the 15 bit figure is 3.330560653658221E-15, which is rounded by Excel for the 'user interface' to 15 digits 3.33056065365822E-15, and then displayed with 30 decimals digits gets one 'fake zero' added, thus the 'binary' and 'decimal' values in the sample are identical only in display, the values ...

  5. Q (number format) - Wikipedia

    en.wikipedia.org/wiki/Q_(number_format)

    The Q notation is a way to specify the parameters of a binary fixed point number format. For example, in Q notation, the number format denoted by Q8.8 means that the fixed point numbers in this format have 8 bits for the integer part and 8 bits for the fraction part. A number of other notations have been used for the same purpose.

  6. Windows Calculator - Wikipedia

    en.wikipedia.org/wiki/Windows_Calculator

    A simple arithmetic calculator was first included with Windows 1.0. [5]In Windows 3.0, a scientific mode was added, which included exponents and roots, logarithms, factorial-based functions, trigonometry (supports radian, degree and gradians angles), base conversions (2, 8, 10, 16), logic operations, statistical functions such as single variable statistics and linear regression.

  7. Single-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Single-precision_floating...

    Conversion of the fractional part: Consider 0.375, the fractional part of 12.375. To convert it into a binary fraction, multiply the fraction by 2, take the integer part and repeat with the new fraction by 2 until a fraction of zero is found or until the precision limit is reached which is 23 fraction digits for IEEE 754 binary32 format.

  8. Binary number - Wikipedia

    en.wikipedia.org/wiki/Binary_number

    The base-2 numeral system is a positional notation with a radix of 2.Each digit is referred to as a bit, or binary digit.Because of its straightforward implementation in digital electronic circuitry using logic gates, the binary system is used by almost all modern computers and computer-based devices, as a preferred system of use, over various other human techniques of communication, because ...

  9. Double-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Double-precision_floating...

    With the 52 bits of the fraction (F) significand appearing in the memory format, the total precision is therefore 53 bits (approximately 16 decimal digits, 53 log 10 (2) ≈ 15.955). The bits are laid out as follows: The real value assumed by a given 64-bit double-precision datum with a given biased exponent and a 52-bit fraction is