Search results
Results from the WOW.Com Content Network
Total dead space (also known as physiological dead space) is the sum of the anatomical dead space and the alveolar dead space. Benefits do accrue to a seemingly wasteful design for ventilation that includes dead space. [1] Carbon dioxide is retained, making a bicarbonate-buffered blood and interstitium possible.
An area with ventilation but no perfusion (and thus a V/Q undefined though approaching infinity) is termed "dead space". [6] Of note, few conditions constitute "pure" shunt or dead space as they would be incompatible with life, and thus the term V/Q mismatch is more appropriate for conditions in between these two extremes.
In medicine, the ratio of physiologic dead space over tidal volume (V D /V T) is a routine measurement, expressing the ratio of dead-space ventilation (V D) to tidal ventilation (V T), as in physiologic research or the care of patients with respiratory disease. [1]
The Shunt equation (also known as the Berggren equation) quantifies the extent to which venous blood bypasses oxygenation in the capillaries of the lung.. “Shunt” and “dead space“ are terms used to describe conditions where either blood flow or ventilation do not interact with each other in the lung, as they should for efficient gas exchange to take place.
1. (medical) Ventilation in which the surface of the thorax is exposed to pressure below the ambient pressure during inspiration. Used as a method of artificial respiration (iron lung). [45] 2. (diving) Breathing where the pressure of the breathing gas at the mouth is lower than the ambient pressure at the thorax.
The ventilation/perfusion ratio (V/Q ratio) is higher in zone #1 (the apex of lung) when a person is standing than it is in zone #3 (the base of lung) because perfusion is nearly absent. However, ventilation and perfusion are highest in base of the lung, resulting in a comparatively lower V/Q ratio.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Minute ventilation (or respiratory minute volume or minute volume) is the volume of gas inhaled (inhaled minute volume) or exhaled (exhaled minute volume) from a person's lungs per minute. It is an important parameter in respiratory medicine due to its relationship with blood carbon dioxide levels .