enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Parallel postulate - Wikipedia

    en.wikipedia.org/wiki/Parallel_postulate

    Nasir al-Din attempted to derive a proof by contradiction of the parallel postulate. [18] He also considered the cases of what are now known as elliptical and hyperbolic geometry, though he ruled out both of them. [17] Euclidean, elliptical and hyperbolic geometry. The Parallel Postulate is satisfied only for models of Euclidean geometry.

  3. Tarski's axioms - Wikipedia

    en.wikipedia.org/wiki/Tarski's_axioms

    Negating the Axiom of Euclid yields hyperbolic geometry, while eliminating it outright yields absolute geometry. Full (as opposed to elementary) Euclidean geometry requires giving up a first order axiomatization: replace φ( x ) and ψ( y ) in the axiom schema of Continuity with x ∈ A and y ∈ B , where A and B are universally quantified ...

  4. Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_geometry

    Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry, Elements.Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions from these.

  5. Saccheri–Legendre theorem - Wikipedia

    en.wikipedia.org/wiki/Saccheri–Legendre_theorem

    In absolute geometry, the Saccheri–Legendre theorem states that the sum of the angles in a triangle is at most 180°. [1] Absolute geometry is the geometry obtained from assuming all the axioms that lead to Euclidean geometry with the exception of the axiom that is equivalent to the parallel postulate of Euclid.

  6. Foundations of geometry - Wikipedia

    en.wikipedia.org/wiki/Foundations_of_geometry

    The various attempted proofs of the parallel postulate produced a long list of theorems that are equivalent to the parallel postulate. Equivalence here means that in the presence of the other axioms of the geometry each of these theorems can be assumed to be true and the parallel postulate can be proved from this altered set of axioms.

  7. Absolute geometry - Wikipedia

    en.wikipedia.org/wiki/Absolute_geometry

    In Euclid's Elements, the first 28 Propositions and Proposition 31 avoid using the parallel postulate, and therefore are valid in absolute geometry.One can also prove in absolute geometry the exterior angle theorem (an exterior angle of a triangle is larger than either of the remote angles), as well as the Saccheri–Legendre theorem, which states that the sum of the measures of the angles in ...

  8. Transversal (geometry) - Wikipedia

    en.wikipedia.org/wiki/Transversal_(geometry)

    It follows from Euclid's parallel postulate that if the two lines are parallel, then the angles of a pair of corresponding angles of a transversal are congruent (Proposition 1.29 of Euclid's Elements). If the angles of one pair of corresponding angles are congruent, then the angles of each of the other pairs are also congruent.

  9. Saccheri quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Saccheri_Quadrilateral

    Saccheri quadrilaterals. A Saccheri quadrilateral is a quadrilateral with two equal sides perpendicular to the base.It is named after Giovanni Gerolamo Saccheri, who used it extensively in his 1733 book Euclides ab omni naevo vindicatus (Euclid freed of every flaw), an attempt to prove the parallel postulate using the method reductio ad absurdum.