Search results
Results from the WOW.Com Content Network
The differential form of Fourier's law of thermal conduction shows that the local heat flux density is equal to the product of thermal conductivity and the negative local temperature gradient . The heat flux density is the amount of energy that flows through a unit area per unit time.
In the study of heat conduction, the Fourier number, is the ratio of time, , to a characteristic time scale for heat diffusion, . This dimensionless group is named in honor of J.B.J. Fourier , who formulated the modern understanding of heat conduction. [ 1 ]
A direct practical application of the heat equation, in conjunction with Fourier theory, in spherical coordinates, is the prediction of thermal transfer profiles and the measurement of the thermal diffusivity in polymers (Unsworth and Duarte). This dual theoretical-experimental method is applicable to rubber, various other polymeric materials ...
Fourier heat conduction equation. Add languages. ... Download as PDF; ... Redirect page. Redirect to: Thermal conduction#Fourier's law;
The thermal conductivity of a material is a measure of its ability to conduct heat.It is commonly denoted by , , or and is measured in W·m −1 ·K −1.. Heat transfer occurs at a lower rate in materials of low thermal conductivity than in materials of high thermal conductivity.
Heat is the flow of thermal energy driven by thermal non-equilibrium, so the term 'heat flow' is a redundancy (i.e. a pleonasm). Heat must not be confused with stored thermal energy, and moving a hot object from one place to another must not be called heat transfer. However, it is common to say ‘heat flow’ to mean ‘heat content’. [1]
Thermal contact resistance is significant and may dominate for good heat conductors such as metals but can be neglected for poor heat conductors such as insulators. [2] Thermal contact conductance is an important factor in a variety of applications, largely because many physical systems contain a mechanical combination of two materials.
A 2008 review paper written by Philips researcher Clemens J. M. Lasance notes that: "Although there is an analogy between heat flow by conduction (Fourier's law) and the flow of an electric current (Ohm’s law), the corresponding physical properties of thermal conductivity and electrical conductivity conspire to make the behavior of heat flow ...