Search results
Results from the WOW.Com Content Network
One can obtain polynomials very close to the optimal one by expanding the given function in terms of Chebyshev polynomials and then cutting off the expansion at the desired degree. This is similar to the Fourier analysis of the function, using the Chebyshev polynomials instead of the usual trigonometric functions.
In mathematics, least squares function approximation applies the principle of least squares to function approximation, by means of a weighted sum of other functions.The best approximation can be defined as that which minimizes the difference between the original function and the approximation; for a least-squares approach the quality of the approximation is measured in terms of the squared ...
The polynomial of best approximation within a given subspace is defined to be the one that minimizes the maximum absolute difference between the polynomial and the function. In this case, the form of the solution is precised by the equioscillation theorem .
For example, given a function defined on the interval [,] and a degree bound , a minimax polynomial approximation algorithm will find a polynomial of degree at most to minimize max a ≤ x ≤ b | f ( x ) − p ( x ) | . {\displaystyle \max _{a\leq x\leq b}|f(x)-p(x)|.} [ 3 ]
The conventional Padé approximation is determined to reproduce the Maclaurin expansion up to a given order. Therefore, the approximation at the value apart from the expansion point may be poor. This is avoided by the 2-point Padé approximation, which is a type of multipoint summation method. [ 9 ]
This x-intercept will typically be a better approximation to the original function's root than the first guess, and the method can be iterated. x n+1 is a better approximation than x n for the root x of the function f (blue curve) If the tangent line to the curve f(x) at x = x n intercepts the x-axis at x n+1 then the slope is
In calculus, Taylor's theorem gives an approximation of a -times differentiable function around a given point by a polynomial of degree , called the -th-order Taylor polynomial. For a smooth function , the Taylor polynomial is the truncation at the order k {\textstyle k} of the Taylor series of the function.
It was first proved by Hassler Whitney in 1957, [1] and is an important tool in the field of approximation theory for obtaining upper estimates on the errors of best approximation. Statement of the theorem