enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Three-point flexural test - Wikipedia

    en.wikipedia.org/wiki/Three-point_flexural_test

    The three-point bending flexural test provides values for the modulus of elasticity in bending, flexural stress, flexural strain and the flexural stress–strain response of the material. This test is performed on a universal testing machine (tensile testing machine or tensile tester) with a three-point or four-point bend fixture.

  3. Ultimate tensile strength - Wikipedia

    en.wikipedia.org/wiki/Ultimate_tensile_strength

    The ultimate tensile strength of a material is an intensive property; therefore its value does not depend on the size of the test specimen.However, depending on the material, it may be dependent on other factors, such as the preparation of the specimen, the presence or otherwise of surface defects, and the temperature of the test environment and material.

  4. Tensile testing - Wikipedia

    en.wikipedia.org/wiki/Tensile_testing

    Tensile specimens made from an aluminum alloy. The left two specimens have a round cross-section and threaded shoulders. The right two are flat specimens designed to be used with serrated grips. An aluminium alloy tensile specimen, after testing. It has broken, and the surface where it broke can be inspected.

  5. Flexural modulus - Wikipedia

    en.wikipedia.org/wiki/Flexural_modulus

    In mechanics, the flexural modulus or bending modulus [1] is an intensive property that is computed as the ratio of stress to strain in flexural deformation, or the tendency for a material to resist bending. It is determined from the slope of a stress-strain curve produced by a flexural test (such as the ASTM D790), and uses units of force per ...

  6. Strain hardening exponent - Wikipedia

    en.wikipedia.org/wiki/Strain_hardening_exponent

    The strain hardening exponent (also called the strain hardening index), usually denoted , is a measured parameter that quantifies the ability of a material to become stronger due to strain hardening. Strain hardening (work hardening) is the process by which a material's load-bearing capacity increases during plastic (permanent) strain , or ...

  7. Stress–strain curve - Wikipedia

    en.wikipedia.org/wiki/Stress–strain_curve

    Beyond the Lüders strain, the stress increases due to strain hardening until it reaches the ultimate tensile stress. During this stage, the cross-sectional area decreases uniformly along the gauge length, due to the incompressibility of plastic flow (not because of the Poisson effect , which is an elastic phenomenon).

  8. Four-point flexural test - Wikipedia

    en.wikipedia.org/wiki/Four-point_flexural_test

    The four-point flexural test provides values for the modulus of elasticity in bending, flexural stress, flexural strain and the flexural stress-strain response of the material. This test is very similar to the three-point bending flexural test .

  9. Stress–strain analysis - Wikipedia

    en.wikipedia.org/wiki/Stress–strain_analysis

    Stress–strain analysis (or stress analysis) is an engineering discipline that uses many methods to determine the stresses and strains in materials and structures subjected to forces. In continuum mechanics , stress is a physical quantity that expresses the internal forces that neighboring particles of a continuous material exert on each other ...