Search results
Results from the WOW.Com Content Network
A (existential second-order) formula is one additionally having some existential quantifiers over second order variables, i.e. …, where is a first-order formula. The fragment of second-order logic consisting only of existential second-order formulas is called existential second-order logic and abbreviated as ESO, as , or even as ∃SO.
In mathematical logic, monadic second-order logic (MSO) is the fragment of second-order logic where the second-order quantification is limited to quantification over sets. [1] It is particularly important in the logic of graphs , because of Courcelle's theorem , which provides algorithms for evaluating monadic second-order formulas over graphs ...
In mathematical logic, algebraic logic is the reasoning obtained by manipulating equations with free variables.. What is now usually called classical algebraic logic focuses on the identification and algebraic description of models appropriate for the study of various logics (in the form of classes of algebras that constitute the algebraic semantics for these deductive systems) and connected ...
propositional logic, Boolean algebra, first-order logic ⊤ {\displaystyle \top } denotes a proposition that is always true. The proposition ⊤ ∨ P {\displaystyle \top \lor P} is always true since at least one of the two is unconditionally true.
The (full) second-order induction scheme consists of all instances of this axiom, over all second-order formulas. One particularly important instance of the induction scheme is when φ is the formula " n ∈ X {\displaystyle n\in X} " expressing the fact that n is a member of X ( X being a free set variable): in this case, the induction axiom ...
Second order approximation, an approximation that includes quadratic terms; Second-order arithmetic, an axiomatization allowing quantification of sets of numbers; Second-order differential equation, a differential equation in which the highest derivative is the second; Second-order logic, an extension of predicate logic
Hume's principle or HP says that the number of Fs is equal to the number of Gs if and only if there is a one-to-one correspondence (a bijection) between the Fs and the Gs. HP can be stated formally in systems of second-order logic.
There is more than one possible semantics for higher-order logic, as discussed in the article on second-order logic. When using full higher-order semantics, a structure need only have a universe for objects of type 0, and the T-schema is extended so that a quantifier over a higher-order type is satisfied by the model if and only if it is ...